Формирования а также регенерации тканей. Регенерация тканей план понятие о регенерации

Регенерация может идти параллельно с некрозом и атрофией. При наличии острого воспаления, регенерации начинается только после затухания его. Регенерация проявляется размножением сохранившихся в близи места повреждения тканевых элементов. Сначала в поврежденный участок врастают капилляры, идет восстановление сосудистой системы и нормализация обмена веществ. Поврежденные ткани рассасываются микро- и макрофагами, которые распадаясь, уносятся вместе со шлаками и выделяются почками. затем в результате деления размножаются соединительно-тканные клетки. Обрастая, капилляры, формируют молодую грануляционную ткань восстанавливаются нервные волокна, паренхимные и другие клетки. Молодая грануляционная ткань ярко-розового цвета, легко кровоточит, богата молодыми соединительно-тканными клетками и капиллярами, со временем капилляры запустевают, часть молодых клеток рассасывается, другие превращаются в рубцовую плотную серо-белого цвета ткань.

Кровь, лимфа, органы крове- и лимфотворения обладают высокими пластическими свойствами, находятся в состоянии постоянной физиологической регенерации, механизмы которой лежат и в основе репаративной регенерации, возникающей вследствие кровопотерь и поражений органов крово- и лимфопоэза. В первый же день кровопотери восстанавливается жидкая часть крови и лимфы за счет всасывания в сосуды тканевой жидкости и поступления воды из желудочно-кишечного тракта. Затем регенерируют клетки крови и лимфы. Тромбоциты и лейкоциты восстанавливаются в течение нескольких дней, эритроциты - несколько дольше (до 2-2,5 нед), позже выравнивается содержание гемоглобина. Репаративная регенерация клеток крови и лимфы при кровопотерях происходит путем усиления функции красного костного мозга губчатого вещества позвонков, грудной кости, ребер и трубчатых костей, а также селезенки, лимфоузлов и лимфоидных фолликулов миндалин, кишечника и других органов. Интрамедуллярное (от лат. intra - внутри, medulla - костный мозг) кроветворение обеспечивает поступление в кровь эритроцитов, гранулоцитов и тромбоцитов. Кроме того, при репаративной регенерации объем миелоидного кроветворения возрастает также за счет превращения жирового костного мозга в красный костный мозг. Экстрамедуллярное миелоидное кроветворение в печени, селезенке, лимфоузлах, почках и других органах возникает при больших или продолжительных кровопотерях, злокачественных анемиях инфекционного, токсического или алиментарно-метаболического происхождения. Костный мозг может восстанавливаться даже при больших разрушениях.

Патологическая регенерация клеток крови и лимфы с резким угнетением или извращением гемо- и лимфопоэза наблюдается при тяжелых поражениях органов крове- и лимфотворения, связанных с лучевой болезнью, лейкозами, врожденными и приобретенными иммунодефицитами, инфекционной и гипопластической анемией. Патогномоничным признаком патологической регенерации является появление в крови и лимфе незрелых, функционально неполноценных атипичных форм клеток.


Селезенка и лимфоузлы при повреждениях восстанавливаются по типу регенерационной гипертрофии.

Кровеносные и лимфатические капилляры обладают высокими регенерационными свойствами даже при больших повреждениях. Их новообразование происходит путем почкования или аутогенно.

Физиологическая регенерация волокнистой соединительной ткани происходит путем размножения происходящих от общей стволовой клетки лимфоцитоподобных мезенхимальных клеток, малодифференцированных юных фибробластов (от лат. fibro - волокно, blastano - образую), а также миофибробластов, тучных клеток (лаброцитов), перицитов и эндотелиальных клеток микрососудов. Из юных клеток дифференцируются зрелые, активно синтезирующие коллаген и эластин фибробласты (коллагено- и эластобласты). Фибробласты сначала синтезируют основное вещество соединительной ткани (гликозоаминогликаны), тропоколлаген и проэластин, а затем в межклеточном пространстве из них образуются нежные ретикулярные (аргирофильные), коллагеновые и эластические волокна. При перестройке и инволюции соединительной ткани активную роль играют фибробласты и макрофаги.

Репаративная регенерация соединительной ткани происходит не только при ее повреждении, но и при неполной регенерации других тканей, при заживлении ран. При этом в конечном итоге фиброзная ткань превращается в плотную грубоволокнистую рубцовую ткань.

Регенерация костной ткани происходит в результате размножения остеогенных клеток - остеобластов в периосте и эндоосте. Репаративная регенерация при переломе костей определяется характером перелома, состоянием костных отломков, надкостницы и кровообращения в области повреждения. Различают первичное и вторичное костные сращения. Первичное костное сращение наблюдается при неподвижности костных отломков и характеризуется врастанием в область дефекта и кровоподтека остеобластов, фибробластов и капилляров.

Вторичные костные сращения часто наблюдают при сложных переломах, подвижности отломков и неблагоприятных условиях регенерации (местные расстройства кровообращения, обширные повреждения надкостницы и т. д.). При этом виде репаративной регенерации сращение костных отломков происходит медленнее, через стадию образования хрящевой ткани (предварительная костно-хрящевая мозоль), которая в дальнейшем подвергается оссификации.

Патологическая регенерация костной ткани связана с общими и местными нарушениями восстановительного процесса, длительным расстройством кровообращения, отмиранием костных отломков, воспалением и нагноением ран. Избыточное и неправильное новообразование костной ткани приводит к деформации кости, появлению костных выростов (остеофитов и экзостозов), преимущественному образованию волокнистой и хрящевой ткани в связи с недостаточной дифференциацией костной ткани. В таких случаях при подвижности костных отломков окружающая ткань приобретает вид связок, формируется ложный сустав.

Регенерация хрящевой ткани происходит за счет хондробластов надхрящницы, которые синтезируют основное вещество хряща - хондрин и превращаются в зрелые хрящевые клетки - хондроциты. Полное восстановление хряща наблюдают при незначительных повреждениях. Чаще всего проявляется неполное восстановление хрящевой ткани, замещение ее соединительнотканным рубцом.

Регенерация жировой ткани происходит за счет камбиальных жировых клеток - липобластов и увеличения объема липоцитов с накоплением жира, а также за счет размножения недифференцированных соединительнотканных клеток и превращения их по мере накопления липидов в цитоплазме в так называемые перстневидные клетки - липоциты. Жировые клетки образуют дольки, окруженные соединительнотканной стромой с сосудами и нервными элементами.

Регенерация мышечной ткани бывает как физиологической, так и после голодания, беломышечной болезни, миоглобинурии, токсикозов, пролежней, инфекционных болезней, связанных с развитием атрофических, дистрофических и некротических процессов.

Скелетная поперечнополосатая мышечная ткань обладает высокими регенерационными свойствами при сохранении сарколеммы. Находящиеся под сарколеммой камбиальные клеточные элементы - миобласты размножаются и формируют многоядерный симпласт, в котором синтезируются миофибриллы и дифференцируются поперечнополосатые мышечные волокна. При нарушении целостности мышечного волокна вновь образованные многоядерные симпласты в виде мышечных почек растут навстречу друг другу и при благоприятных условиях (небольшой дефект, отсутствие рубцовой ткани) восстанавливают целостность мышечного волокна.

Сердечная поперечнополосатая мышечная ткань регенерирует по типу регенерационной гипертрофии. В неповрежденных или дистрофически измененных миокардиоцитах происходит восстановление структуры и функции за счет гиперплазии органелл и гипертрофии волокон. При прямом некрозе, инфаркте миокарда и пороках сердца может наблюдаться неполное восстановление мышечной ткани с образованием соединительнотканного рубца и с регенерационной гипертрофией миокарда в сохранившихся отделах сердца.

Регенерация нервной ткани. Ганглиозные клетки головного и спинного мозга в течение жизни интенсивно обновляются на молекулярном и субклеточном уровнях, но не размножаются. При разрушении их происходит внутриклеточная компенсаторная регенерация (гиперплазия органелл) оставшихся клеток. К компенсаторно-приспособительным процессам в нервной ткани относится обнаружение многоядрышковых, двухъядерных и гипертрофированных нервных клеток при различного рода болезнях, сопровождающихся дистрофическими процессами, при сохранении общей структуры нервной ткани. Клеточная форма регенерации свойственна невроглии. Погибшие глиальные клетки и небольшие дефекты головного и спинного мозга, вегетативных ганглиев замещаются размножающимися клетками невроглии и соединительной ткани с образованием глиалышх узелков и рубцов. Нервные клетки вегетативной нервной системы восстанавливаются путем гиперплазии органелл, а также неисключается возможность их размножения.

Периферические нервы полностью регенерируют при условии сохранения связи центрального отрезка нервного волокна с нейроном и незначительного расхождения перерезанных концов нерва.

При нарушении регенерации нервов (значительное расхождение частей перерезанного нерва, расстройство крово- и лимфообращения, наличие воспалительного экссудата) образуется соединительнотканный рубец с неупорядоченным разветвлением в нем осевых цилиндров центрального отрезка нервного волокна. В культе конечности после ее ампутации избыточное разрастание нервных и соединительнотканных элементов может привести к возникновению так называемой ампутационной невромы.

Регенерация эпителиальной ткани. Покровный эпителий относится к тканям, обладающим высоким биологическим потенциалом самовосстановления. Физиологическая регенерация многослойного плоского ороговевающего эпителия кожи происходит постоянно за счет размножения клеток зародышевого (камбиального) мальпигиеваслоя. При повреждении эпидермиса и стромы кожи клетки росткового слоя по краям раны размножаются, наползают на восстановленную мембрану и строму органа и покрывают дефект (заживление раны под струпом и по первичному натяжению). Однако вновь образованный эпителий утрачивает способность к полной дифференциации характерных для эпидермиса слоев, покрывает дефект более тонким пластом и не образует производных кожи: сальных и потовых желез, волосяного покрова (неполная регенерация).

Покровный эпителий слизистых оболочек пищеварительного, дыхательного трактов и мочеполовых путей (многослойный плоский неороговевающий, переходный, однослойный призматический и многорядный мерцательный) восстанавливается путем размножения молодых недифференцированных клеток крипт и выводных протоков желез. По мере их роста и созревания они превращаются в специализированные клетки слизистых оболочек и их желез.

Неполная регенерация пищевода, желудка, кишечника, протоков желез и других трубчатых и полостных органов с образованием соединительнотканных рубцов может вызывать сужение (стеноз) и расширение их, появление односторонних выпячиваний (дивертикулов), спаек (синехий), неполное или полное зарощение (облитерация) органов (полости сердечной сумки, плевральной, брюшинной, суставных полостей, синовиальных сумок и т. д.).

Регенерация печени, почек, легких, поджелудочной железы, других желез внутренней секреции протекает на молекулярном, субклеточном и клеточном уровнях на основе закономерностей, свойственных физиологической регенерации, с большой интенсивностью. При очаговом необратимом повреждении (некрозе) в паренхиматозных органах, а также при частичной резекции их масса органа может восстанавливаться по типу регенерационной гипертрофии. При этом в сохранившейся части органа наблюдается размножение и увеличение объема клеточных и тканевых элементов, а на месте дефекта образуется рубцовая ткань (неполное восстановление).

Патологическая регенерация паренхиматозных органов наблюдается при различных длительных, часто повторяющихся повреждениях их (расстройствах кровообращения и иннервации, воздействиях токсических ядовитых веществ, инфекциях). Она характеризуется атипичной регенерацией эпителиальной и соединительной тканей, структурной перестройкой и деформацией органа, развитием цирроза (цирроз печени, поджелудочной железы, нефроцирроз, пневмоцирроз).

Гипертрофией (от греч. hyper - много, trophe - питание) и гиперплазией (от греч. plasso - образую) называются компенсаторно-приспособительные процессы, причинно обусловленные повышенным функциональным стимулом, проявляющиеся увеличением количества и величины структурных элементов и усилением их функции. Структурно-функциональные изменения при гипертрофии и гиперплазии связаны с повышением интенсивности обмена веществ.

Гипертрофия - увеличение объема и массы органа, ткани, клеток; гиперплазия - увеличение количества структурных элементов органа, тканей и клеток в результате их размножения. В основе этих процессов лежат усиленное питание и повышенная функция нормально развитого органа. Если увеличивается специализированная ткань органа, то развивается истинная гипертрофия или гиперплазия. Увеличение органа за счет соединительной, жировой ткани или объема полости определяется как ложная гипертрофия. Врожденное увеличение органа, связанное с развитием порока (гигантизм организма, органа или ткани), как возрастной рост и развитие, к гипертрофии не относят. При гипертрофии клеток происходит гиперплазия внутриклеточных органелл (ядрышек, ядер, митохондрий, рибосом, цитоплазматической сети, пластинчатого комплекса, лизосом и др.), а при гиперплазии клеток, тканей и органов отмечают отдельные гипертрофированные структурные элементы (например, полиплоидные и многоядерные клетки). Установлено, что в одних органах и тканях преобладает гипертрофия с внутриклеточной гиперплазией (миокард, скелетные мышцы, нервная ткань), в других - гиперплазия клеток (костный мозг, лимфоузлы и селезенка, соединительная ткань, покровный эпителий кожи и слизистых оболочек) или сочетание гипертрофии с гиперплазией (печень, почки, легкие и др.).

Регенерация (от лат. regeneratio - возрождение) - процесс восстановления организмом утраченных или поврежденных структур. Регенерация поддерживает строение и функции организма, его целостность. Различают два вида регенерации: физиологическую и репаративную. Восстановление органов, тканей, клеток или внутриклеточных структур после разрушения их в процессе жизнедеятельности организма называют физиологической регенерацией. Восстановление структур после травмы или действия других повреждающих факторов называют репаративной регенерацией. При регенерации происходят такие процессы, как детерминация, дифференцировка, рост, интеграция и др., сходные с процессами, имеющими место в эмбриональном развитии. Однако при регенерации все они идут уже вторично, т.е. в сформированном организме.

Физиологическая регенерация представляет собой процесс обновления функционирующих структур организма. Благодаря физиологической регенерации поддерживается структурный гомеостаз и обеспечивается возможность постоянного выполнения органами их функций. С общебиологической точки зрения, физиологическая регенерация, как и обмен веществ, является проявлением такого важнейшего свойства жизни, как самообновление.

Примером физиологической регенерации на внутриклеточном уровне являются процессы восстановления субклеточных структур в клетках всех тканей и органов. Значение ее особенно велико для так называемых «вечных» тканей, утративших способность к регенерации путем деления клеток. В первую очередь это относится к нервной ткани.

Примерами физиологической регенерации на клеточном и тканевом уровнях являются обновление эпидермиса кожи, роговицы глаза, эпителия слизистой кишечника, клеток периферической крови и др. Обновляются производные эпидермиса - волосы и ногти. Это так называемая пролиферативная регенерация, т.е. восполнение численности клеток за счет их деления. Во многих тканях существуют специальные камбиальные клетки и очаги их пролиферации. Это крипты в эпителии тонкой кишки, костный мозг, пролиферативные зоны в эпителии кожи. Интенсивность клеточного обновления в перечисленных тканях очень велика. Это так называемые «лабильные» ткани. Все эритроциты теплокровных животных, например, сменяются за 2-4 мес, а эпителий тонкой кишки полностью сменяется за 2 сут. Это время требуется для перемещения клетки из крипты на ворсинку, выполнения ею функции и гибели. Клетки таких органов, как печень, почка, надпочечник и др., обновляются значительно медленнее. Это так называемые «стабильные» ткани.

Об интенсивности пролиферации судят по количеству митозов, приходящихся на 1000 подсчитанных клеток. Если учесть, что сам митоз в среднем длится около 1 ч, а весь митотаческий цикл в соматических клетках в среднем протекает 22-24 ч, то становится ясно, что для определения интенсивности обновления клеточного состава тканей необходимо подсчитать количество митозов в течение одних или нескольких суток. Оказалось, что количество делящихся клеток не одинаково в разные часы суток. Так был открыт суточный ритм клеточных делений, пример которого изображен на рис. 8.23.

Рис. 8.23. Суточные изменения митотического индекса (МИ)

в эпителии пищевода (I ) и роговицы (2 ) мышей.

Митотический индекс выражен в промилле (0 / 00), отражающем число митозов

в тысяче подсчитанных клеток


Суточный ритм количества митозов обнаружен не только в нормальных, но и в опухолевых тканях. Он является отражением более общей закономерности, а именно ритмичности всех функций организма. Одна из современных областей биологии - хронобиология - изучает, в частности, механизмы регуляции суточных ритмов митотической активности, что имеет весьма важное значение для медицины. Существование самой суточной периодичности количества митозов указывает на регулируемость физиологической регенерации организмом. Кроме суточных существуют лунные и годичные циклы обновления тканей и органов.

В физиологической регенерации выделяют две фазы: разрушительную и восстановительную. Полагают, что продукты распада части клеток стимулируют пролиферацию других. Большую роль в регуляции клеточного обновления играют гормоны.

Физиологическая регенерация присуща организмам всех видов, но особенно интенсивно она протекает у теплокровных позвоночных, так как у них вообще очень высока интенсивность функционирования всех органов по сравнению с другими животными.

Репаративная (от лат. reparatio - восстановление) регенерация наступает после повреждения ткани или органа. Она очень разнообразна по факторам, вызывающим повреждения, по объемам повреждения, по способам восстановления. Механическая травма, например оперативное вмешательство, действие ядовитых веществ, ожоги, обморожения, лучевые воздействия, голодание, другие болезнетворные агенты,- все это повреждающие факторы. Наиболее широко изучена регенерация после механической травмы. Способность некоторых животных, таких, как гидра, планария, некоторые кольчатые черви, морские звезды, асцидия и др., восстанавливать утраченные органы и части организма издавна изумляла ученых. Ч. Дарвин, например, считал удивительными способность улитки воспроизводить голову и способность саламандры восстанавливать глаза, хвост и ноги именно в тех местах, где они отрезаны.

Объем повреждения и последующее восстановление бывают весьма различными. Крайним вариантом является восстановление целого организма из отдельной малой его части, фактически из группы соматических клеток. Среди животных такое восстановление возможно у губок и кишечнополостных. Среди растений возможно развитие целого нового растения даже из одной соматической клетки, как это получено на примере моркови и табака. Такой вид восстановительных процессов сопровождается возникновением новой морфогенетической оси организма и назван Б.П. Токиным «соматическим эмбриогенезом», ибо во многом напоминает эмбриональное развитие.

Существуют примеры восстановления больших участков организма, состоящих из комплекса органов. В качестве примера служат регенерация ротового конца у гидры, головного конца у кольчатого червя и восстановление морской звезды из одного луча (рис. 8.24). Широко распространена регенерация отдельных органов, например конечности у тритона, хвоста у ящерицы, глаз у членистоногих. Заживление кожных покровов, ран, повреждений костей и других внутренних органов является менее объемным процессом, но не менее важным для восстановления структурно-функциональной целостности организма. Особый интерес представляет способность зародышей на ранних стадиях развития восстанавливаться после значительной утраты материала. Эта способность была последним аргументом в борьбе между сторонниками преформизма и эпигенеза и привела в 1908 г. Г. Дриша к концепции эмбриональной регуляции.


Рис. 8.24. Регенерация комплекса органов у некоторых видов беспозвоночных животных. А - гидра;Б - кольчатый червь; В - морская звезда

(пояснение см. в тексте)

Существует несколько разновидностей или способов репаративной регенерации. К ним относят эпиморфоз, морфаллаксис, заживление эпителиальных ран, регенерационную гипертрофию, компенсаторную гипертрофию.

Эпителизация при заживлении ран с нарушенным эпителиальным покровом идет примерно одинаково, независимо от того, будет далее происходить регенерация органа путем эпиморфоза или нет. Эпидермальное заживление раны у млекопитающих в том случае, когда раневая поверхность высыхает с образованием корки, проходит следующим образом (рис. 8.25). Эпителий на краю раны утолщается вследствие увеличения объема клеток и расширения межклеточных пространств. Сгусток фибрина играет роль субстрата для миграции эпидермиса в глубь раны. В мигрирующих эпителиальных клетках нет митозов, однако они обладают фагоцитарной активностью. Клетки с противоположных краев вступают в контакт. Затем наступает кератинизация раневого эпидермиса и отделение корки, покрывающей рану.

Рис. 8.25. Схема некоторых событий, происходящих

при эпителизации кожной раны у млекопитающих.

А- начало врастания эпидермиса под некротическую ткань; Б- срастание эпидермиса и отделение струпа:

1 -соединительная ткань, 2- эпидермис, 3- струп, 4- некротическая ткань

К моменту встречи эпидермиса противоположных краев в клетках, расположенных непосредственно вокруг края раны, наблюдается вспышка митозов, которая затем постепенно падает. По одной из версий, эта вспышка вызвана понижением концентрации ингибитора митозов - кейлона.

Эпиморфоз представляет собой наиболее очевидный способ регенерации, заключающийся в отрастании нового органа от ампутационной поверхности. Регенерация конечности тритона и аксолотля изучена детально. Выделяют регрессивную и прогрессивную фазы регенерации. Регрессивная фаза начинается с заживления раны, во время которого происходят следующие основные события: остановка кровотечения, сокращение мягких тканей культи конечности, образование над раневой поверхностью сгустка фибрина и миграция эпидермиса, покрывающего ампутационную поверхность.

Затем начинается разрушение остеоцитов на дистальном конце кости и других клеток. Одновременно в разрушенные мягкие ткани проникают клетки, участвующие в воспалительном процессе, наблюдается фагоцитоз и местный отек. Затем вместо образования плотного сплетения волокон соединительной ткани, как это происходит при заживлении ран у млекопитающих, в области под раневым эпидермисом утрачиваются дифференцированные ткани. Характерна остеокластическая эрозия кости, что является гистологическим признаком дедифференцировки. Раневой эпидермис, уже пронизанный регенерирующими нервными волокнами, начинает быстро утолщаться. Промежутки между тканями все более заполняются мезенхимоподобными клетками. Скопление мезенхимных клеток под раневым эпидермисом является главным показателем формирования регенерационной бластемы. Клетки бластемы выглядят одинаково, но именно в этот момент закладываются основные черты регенерирующей конечности.

Затем начинается прогрессивная фаза, для которой наиболее характерны процессы роста и морфогенеза. Длина и масса регенерационной бластемы быстро увеличиваются. Рост бластемы происходит на фоне идущего полным ходом формирования черт конечности, т.е. ее морфогенеза. Когда форма конечности в общих чертах уже сложилась, регенерат все еще меньше нормальной конечности. Чем крупнее животное, тем больше эта разница в размерах. Для завершения морфогенеза требуется время, по истечении которого регенерат достигает размеров нормальной конечности.

Некоторые стадии регенерации передней конечности у тритона после ампутации на уровне плеча показаны на рис. 8.26. Время, необходимое для полной регенерации конечности, варьирует в зависимости от размера и возраста животного, а также от температуры, при которой она протекает.

Рис. 8.26. Стадии регенерации передней конечности у тритона

У молодых личинок аксолотлей конечность может регенерировать за 3 нед, у взрослых тритонов и аксолотлей за 1-2 мес, а у наземных амбистом для этого требуется около 1 года.

При эпиморфной регенерации не всегда образуется точная копия удаленной структуры. Такую регенерацию называют атипичной. Существует много разновидностей атипичной регенерации. Гипоморфоз - регенерация с частичным замещением ампутированной структуры. Так, у взрослой шпорцевой лягушки возникает шиловидная структура вместо конечности. Гетероморфоз - появление иной структуры на месте утраченной. Это может проявляться в виде гомеозисной регенерации, заключающейся в появлении конечности на месте антенн или глаза у членистоногих, а также в изменении полярности структуры. Из короткого фрагмента планарии можно стабильно получать биполярную планарию (рис. 8.27).

Встречается образование дополнительных структур, или избыточная регенерация. После надреза культи при ампутации головного отдела планарии возникает регенерация двух голов или более (рис. 8.28). Можно получить больше пальцев при регенерации конечности аксолотля, повернув конец культи конечности на 180°. Дополнительные структуры являются зеркальным отражением исходных или регенерировавших структур, рядом с которыми они расположены (закон Бэйтсона).

Рис. 8.27. Биполярная планария

Морфаллаксис - это регенерация путем перестройки регенерирующего участка. Примером служит регенерация гидры из кольца, вырезанного из середины ее тела, или восстановление планарии из одной десятой или двадцатой ее части. На раневой поверхности в этом случае не происходит значительных формообразовательных процессов. Отрезанный кусочек сжимается, клетки внутри него перестраиваются, и возникает целая особь

уменьшенных размеров, которая затем растет. Этот способ регенерации впервые описал Т. Морган в 1900 г. В соответствии с его описанием морфаллаксис осуществляется без митозов. Нередко имеет место сочетание эпиморфного роста на месте ампутации с реорганизацией путем морфаллаксиса в прилежащих частях тела.

Рис. 8.28. Многоголовая планария, полученная после ампутации головы

и нанесения насечек на культю

Регенерационная гипертрофия относится к внутренним органам. Этот способ регенерации заключается в увеличении размеров остатка органа без восстановления исходной формы. Иллюстрацией служит регенерация печени позвоночных, в том числе млекопитающих. При краевом ранении печени удаленная часть органа никогда не восстанавливается. Раневая поверхность заживает. В то же время внутри оставшейся части усиливается размножение клеток (гиперплазия) и в течение двух недель после удаления 2/3 печени восстанавливаются исходные масса и объем, но не форма. Внутренняя структура печени оказывается нормальной, дольки имеют типичную для них величину. Функция печени также возвращается к норме.

Компенсаторная гипертрофия заключается в изменениях в одном из органов при нарушении в другом, относящемся к той же системе органов. Примером является гипертрофия в одной из почек при удалении другой или увеличение лимфатических узлов при удалении селезенки.

Последние два способа отличаются местом регенерации, но механизмы их одинаковы: гиперплазия и гипертрофия.

Восстановление отдельных мезодермальных тканей, таких, как мышечная и скелетная, называют тканевой регенерацией. Для регенерации мышцы важно сохранение хотя бы небольших ее культей на обоих концах, а для регенерации кости необходима надкостница. Регенерация путем индукции происходит в определенных мезодермальных тканях млекопитающих в ответ на действие специфических индукторов, которые вводят внутрь поврежденной области. Этим способом удается получить полное замещение дефекта костей черепа после введения в него костных опилок.

Таким образом, существует множество различных способов или типов морфогенетических явлений при восстановлении утраченных и поврежденных частей организма. Различия между ними не всегда очевидны, и требуется более глубокое понимание этих процессов.

Изучение регенерационных явлений касается не только внешних проявлений. Существует целый ряд вопросов, носящих проблемный и теоретический характер. К ним относятся вопросы регуляции и условий, в которых протекают восстановительные процессы, вопросы происхождения клеток, участвующих в регенерации, способности к регенерации у различных групп, животных и особенностей восстановительных процессов у млекопитающих.

Установлено, что в конечности амфибий после ампутации и в процессе регенерации происходят реальные изменения электрической активности. При проведении электрического тока через ампутированную конечность у взрослых шпорцевых лягушек наблюдается усиление регенерации передних конечностей. В регенератах увеличивается количество нервной ткани, из чего делается вывод, что электрический ток стимулирует врастание нервов в края конечностей, в норме не регенерирующих.

Попытки стимулировать подобным образом регенерацию конечностей у млекопитающих оказались безуспешными. Так, под действием электрического тока или при сочетании действия электрического тока с фактором роста нервов удавалось получить у крысы только разрастание скелетной ткани в виде хрящевых и костных мозолей, которые не походили на нормальные элементы скелета конечностей.

Несомненна регуляция регенерационных процессов со стороны нервной системы. При тщательной денервации конечности во время ампутации эпиморфная регенерация полностью подавляется и бластема никогда не образуется. Были проведены интересные опыты. Если нерв конечности тритона отвести под кожу основания конечности, то образуется дополнительная конечность. Если его отвести к основанию хвоста - стимулируется образование дополнительного хвоста. Отведение нерва на боковую область никаких дополнительных структур не вызывает. Эти эксперименты привели к созданию концепции регенерационных полей. .

Было установлено, что для инициации регенерации решающим является число нервных волокон. Тип нерва роли не играет. Влияние нервов на регенерацию связывается с трофическим действием нервов на ткани конечностей.

Получены данные в пользу гуморальной регуляции регенерационных процессов. Особенно распространенной моделью для изучения этого является регенерирующая печень. После введения нормальным интактным животным сыворотки или плазмы крови от животных, подвергшихся удалению печени, у первых наблюдалась стимуляция митотической активности клеток печени. Напротив, при введении травмированным животным сыворотки от здоровых животных получали снижение количества митозов в поврежденной печени. Эти опыты могут свидетельствовать как о присутствии в крови травмированных животных стимуляторов регенерации, так и о присутствии в крови интактных животных ингибиторов клеточного деления. Объяснение результатов опытов затрудняется необходимостью учитывать иммунологический эффект инъекций.

Важнейшим компонентом гуморальной регуляции компенсаторной и регенерационной гипертрофии является иммунологический ответ. Не только частичное удаление органа, но и многие воздействия вызывают возмущения в иммунном статусе организма, появление аутоантител и стимуляцию процессов клеточной пролиферации.

Большие разногласия существуют по вопросу о клеточных источниках регенерации. Откуда берутся или как возникают недифференцированные клетки бластемы, морфологически сходные с мезенхимными? Существует три предположения.

1. Гипотеза резервных клеток подразумевает, что предшественниками регенерационной бластемы являются так называемые резервные клетки, которые останавливаются на некоем раннем этапе своей дифференцировки и не участвуют в процессе развития до получения стимула к регенерации.

2. Гипотеза временной дедифференцировки, или модуляции, клеток предполагает, что в ответ на регенерационный стимул дифференцированные клетки могут утрачивать признаки специализации, но затем снова дифференцируются в тот же клеточный тип, т.е., потеряв на время специализацию, они не утрачивают детерминацию.

3. Гипотеза полной дедифференцировки специализированных клеток до состояния, сходного с мезенхимными клетками и с возможной последующей трансдифференцировкой или метаплазией, т.е. превращением в клетки другого типа, полагает, что в этом случае клетка утрачивает не только специализацию, но и детерминацию.

Современные методы исследования не позволяют с абсолютной достоверностью доказать все три предположения. Тем не менее абсолютно верно, что в культях пальцев аксолотля происходит высвобождение хондроцитов из окружающего матрикса и миграция их в регенерационную бластему. Дальнейшая их судьба не определена. Большинство исследователей признают дедифференцировку и метаплазию при регенерации хрусталика у амфибий. Теоретическое значение этой проблемы заключается в допущении возможности или невозможности изменений клеткой ее программы до такой степени, что она возвращается в состояние, когда снова способна делиться и репрограммироватьсвой синтетический аппарат. Например, хондроцит становится миоцитом или наоборот.

Способность к регенерации не имеет однозначной зависимости от уровня организации, хотя давно уже было замечено, что более низко организованные животные обладают лучшей способностью к регенерации наружных органов. Это подтверждается удивительными примерами регенерации гидры, планарий, кольчатых червей, членистоногих, иглокожих, низших хордовых, например асцидий. Из позвоночных наилучшей регенерационной способностью обладают хвостатые земноводные. Известно, что разные виды одного и того же класса могут сильно отличаться по способности к регенерации. Кроме того, при изучении способности к регенерации внутренних органов оказалось, что она значительно выше у теплокровных животных, например у млекопитающих, по сравнению с земноводными.

Регенерация у млекопитающих отличается своеобразием. Для регенерации некоторых наружных органов нужны особые условия. Язык, ухо, например, не регенерируют при краевом повреждении. Если же нанести сквозной дефект через всю толщу органа, восстановление идет хорошо. В некоторых случаях наблюдали регенерацию сосков даже при ампутации их по основанию. Регенерация внутренних органов может идти очень активно. Из небольшого фрагмента яичника восстанавливается целый орган. Об особенностях регенерации печени уже было сказано выше. Различные ткани млекопитающих тоже хорошо регенерируют. Есть предположение, что невозможность регенерации конечностей и других наружных органов у млекопитающих носит приспособительный характер и обусловлена отбором, поскольку при активном образе жизни нежные морфогенетические процессы затрудняли бы существование. Достижения биологии в области регенерации успешно применяются в медицине. Однако в проблеме регенерации очень много нерешенных вопросов.

На протяжении всей жизни организма в тканях происходят процессы изнашивания и отмирания клеток (физиологическая дегенерация) и замены их новыми (физиологическая регенерация). Физиологическая регенерация может быть внутриклеточной (обновление органелл) и клеточной (обновление на уровне клеток за счет пролиферации камбиальных или дифференцированных клеток). Для каждой ткани характерны специфические особенности морфологических проявлений физиологической регенерации на клеточном и субклеточном уровнях.

Если понимать физиологическую регенерацию тканей как процесс клеточного обновления, то к лабильным (или обновляющимся) тканям следует отнести кроветворные ткани, кишечный эпителий, эпидермис, рыхлую соединительную ткань и некоторые другие. Для них характерен высокий уровень пролиферативной активности клеток.

Ряд тканей отличаются сочетанием клеточной и внутриклеточной форм физиологической регенерации (эпителий печени, почек, легких, эпителии эндокринных органов, гладкая мышечная ткань и другие).

Сердечная мышечная ткань и нервная ткань характеризуются внутриклеточной формой физиологической регенерации . В этих тканях, не имеющих камбиальных клеток, происходит непрерывное обновление внутриклеточных ультраструктур.

Физиологическая регенерация тканей - это одно из проявлений сложного процесса постнатального гистогенеза. Для физиологической регенерации свойственна генетическая детерминированность составляющих ее процессов - пролиферации клеток, их дифференцировки, роста, интеграции и функциональной адаптации. Закономерности постнатального гистогенеза обусловливают не только физиологическую регенерацию тканей, но и все стороны их возрастной динамики.

Регенерационный гистогенез

В ответ на действие экстремального фактора и нарушение тканевой организации органа возникает комплекс реакций с вовлечением всех структурных уровней организации живого. Можно лишь условно выделить те процессы, которые характерны для тканевого уровня - а именно, процессы регенерационного гистогенеза.

Сразу же после повреждения в тканях развиваются реактивные изменения , сопровождающиеся нарушениями пролиферации, дифференцировки и интеграции клеток. Если поврежденные клетки не адаптируются к новым условиям, наступает их распад, гибель и элиминация. Формы проявления регенерационного гистогенеза (например, клеточное размножение или гиперплазия внутриклеточных структур) обусловлены закономерными процессами эмбрионального гистогенеза и специфичны для каждой ткани.

В обновляющихся тканях , для нормального гистогенеза которых характерна пролиферация клеток путем митоза, и в процессах регенерации основная роль принадлежит митотическому делению клеток. Регенерационный гистогенез растущих тканей включает процессы как клеточной пролиферации, так и внутриклеточного увеличения структурных компонентов (органелл). Регенерационный гистогенез стационарных тканей происходит за счет внутриклеточных репаративных процессов (увеличение количества органелл, рост отростков и образование синаптических структур в нервных клетках).

Таким образом, изучение условий успешной регенерации тканей возможно на путях более глубокого изучения гистогенезов, ибо оптимизация посттравматической регенерации должна проводиться с учетом особенностей физиологической регенерации конкретной ткани. Так, например, бесполезно стимулировать нейроны к митозу, если этот процесс им несвойственен. Напротив, стимуляция митозов в обновляющихся тканях вполне оправданна.

В поврежденном органе процесс регенерации включает всегда комплекс межтканевых взаимодействий (корреляций). В ходе регенерации складываются сложные взаимоотношения между эпителиями, соединительными и нервными тканями. Воспалительные разрастания соединительной ткани в значительной степени определяют исход восстановительного процесса. Взаимодействия различных тканей с нервной, эндокринной, сосудистой, иммунной системами оказывают существенное влияние на характер их реактивности и регенерации.

Ткани, являясь составными частями органов , в своих регенеративных процессах подчинены не только собственно тканевым, но и органным закономерностям. Реализация способностей тканей к посттравматической регенерации осуществляется в системе органа на основе межтканевых корреляций.

Регенерация - восстановление клеток, направленное на поддержание функциональной активности данной системы. В регенерации различают такие понятия, как форма регенерации, уровень регенерации, способ регенерации.

^ Формы регенерации: физиологическая регенерация - восстановление клеток ткани после их естественной гибели (например, кроветворение);

репаративная регенерация - восстановление тканей и органов после их повреждения (травмы, воспаления, хирургического воздействия и так далее).

Уровни регенерации - соответствуют уровням организации живой материи: клеточный (внутриклеточный);

тканевой; органный.

Способы регенерации:клеточный способразмножением (пролиферацией) клеток;

внутриклеточный способвнутриклеточное восстановление органелл, гипертрофия, полиплоидия;

заместительный способзамещение дефекта ткани или органа соединительной тканью, обычно с образованием рубца, например: образование рубцов в миокарде после инфаркта миокарда.

Факторы регулирующие регенерацию: гормоны - биологически активные вещества;

медиаторы - индикаторы метаболических процессов;

кейлоны - это вещества гликопротеидной природы, которые синтезируются соматическими клетками, основная функцияторможение клеточного созревания;

антагонисты кейлонов - факторы роста;

микроокружение любой клетки.

Различают два вида регенерации : физиологическую и репаративную. Восстановление органов, тканей, клеток или внутриклеточных структур после разрушения их в процессе жизнедеятельности организма называют физиологической регенерацией. Восстановление структур после травмы или действия других повреждающих факторов называют репаративной регенерацией. При регенерации происходят такие процессы, как детерминация, дифференцировка, рост, интеграция и др., сходные с процессами, имеющими место в эмбриональном развитии. Однако при регенерации все они идут уже вторично, т.е. в сформированном организме.

Физиологическая регенерация представляет собой процесс обновления функционирующих структур организма. Благодаря физиологической регенерации поддерживается структурный гомеостаз и обеспечивается возможность постоянного выполнения органами их функций. С общебиологической точки зрения, физиологическая регенерация, как и обмен веществ, является проявлением такого важнейшего свойства жизни, как самообновление.

Примером физиологической регенерации на внутриклеточном уровне являются процессы восстановления субклеточных структур в клетках всех тканей и органов. Значение ее особенно велико для так называемых «вечных» тканей, утративших способность к регенерации путем деления клеток. В первую очередь это относится к нервной ткани. Примерами физиологической регенерации на клеточном и тканевом уровнях являются обновление эпидермиса кожи, роговицы глаза, эпителия слизистой кишечника, клеток периферической крови и др. Обновляются производные эпидермиса - волосы и ногти. Это так называемая пролиферативная регенерация, т.е. восполнение численности клеток за счет их деления. Во многих тканях существуют специальные камбиальные клетки и очаги их пролиферации. Это крипты в эпителии тонкой кишки, костный мозг, пролиферативные зоны в эпителии кожи. Интенсивность клеточного обновления в перечисленных тканях очень велика. Это так называемые «лабильные» ткани. Все эритроциты теплокровных животных, например, сменяются за 2-4 мес, а эпителий тонкой кишки полностью сменяется за 2 сут. Это время требуется для перемещения клетки из крипты на ворсинку, выполнения ею функции и гибели. Клетки таких органов, как печень, почка, надпочечник и др., обновляются значительно медленнее. Это так называемые «стабильные» ткани.

Об интенсивности пролиферации судят по количеству митозов, приходящихся на 1000 подсчитанных клеток. Если учесть, что сам митоз в среднем длится около 1 ч, а весь митотаческий цикл в соматических клетках в среднем протекает 22-24 ч, то становится ясно, что для определения интенсивности обновления клеточного состава тканей необходимо подсчитать количество митозов в течение одних или нескольких суток. Оказалось, что количество делящихся клеток не одинаково в разные часы суток. Так был открыт суточный ритм клеточных делений

В физиологической регенерации выделяют две фазы: разрушительную и восстановительную. Полагают, что продукты распада части клеток стимулируют пролиферацию других. Большую роль в регуляции клеточного обновления играют гормоны. Физиологическая регенерация присуща организмам всех видов, но особенно интенсивно она протекает у теплокровных позвоночных, так как у них вообще очень высока интенсивность функционирования всех органов по сравнению с другими животными.

Репаративная (от лат. reparatio - восстановление) регенерация наступает после повреждения ткани или органа. Она очень разнообразна по факторам, вызывающим повреждения, по объемам повреждения, по способам восстановления. Механическая травма, например оперативное вмешательство, действие ядовитых веществ, ожоги, обморожения, лучевые воздействия, голодание, другие болезнетворные агенты,- все это повреждающие факторы. Наиболее широко изучена регенерация после механической травмы. Способность некоторых животных, таких, как гидра, планария, некоторые кольчатые черви, морские звезды, асцидия и др., восстанавливать утраченные органы и части организма издавна изумляла ученых. Ч. Дарвин, например, считал удивительными способность улитки воспроизводить голову и способность саламандры восстанавливать глаза, хвост и ноги именно в тех местах, где они отрезаны. Объем повреждения и последующее восстановление бывают весьма различными. Крайним вариантом является восстановление целого организма из отдельной малой его части, фактически из группы соматических клеток. Среди животных такое восстановление возможно у губок и кишечнополостных. Среди растений возможно развитие целого нового растения даже из одной соматической клетки, как это получено на примере моркови и табака. Такой вид восстановительных процессов сопровождается возникновением новой морфогенетической оси организма и назван Б.П. Токиным «соматическим эмбриогенезом», ибо во многом напоминает эмбриональное развитие.

Существуют примеры восстановления больших участков организма, состоящих из комплекса органов. В качестве примера служат регенерация ротового конца у гидры, головного конца у кольчатого червя и восстановление морской звезды из одного луча (рис. 8.24). Широко распространена регенерация отдельных органов, например конечности у тритона, хвоста у ящерицы, глаз у членистоногих. Заживление кожных покровов, ран, повреждений костей и других внутренних органов является менее объемным процессом, но не менее важным для восстановления структурно-функциональной целостности организма. Особый интерес представляет способность зародышей на ранних стадиях развития восстанавливаться после значительной утраты материала. Эта способность была последним аргументом в борьбе между сторонниками преформизма и эпигенеза и привела в 1908 г. Г. Дриша к концепции эмбриональной регуляции.

Существует несколько разновидностей или способов репаративной регенерации. К ним относят эпиморфоз, морфаллаксис, заживление эпителиальных ран, регенерационную гипертрофию, компенсаторную гипертрофию.

Эпителизация при заживлении ран с нарушенным эпителиальным покровом идет примерно одинаково, независимо от того, будет далее происходить регенерация органа путем эпиморфоза или нет. Эпидермальное заживление раны у млекопитающих в том случае, когда раневая поверхность высыхает с образованием корки, проходит следующим образом. Эпителий на краю раны утолщается вследствие увеличения объема клеток и расширения межклеточных пространств. Сгусток фибрина играет роль субстрата для миграции эпидермиса в глубь раны. В мигрирующих эпителиальных клетках нет митозов, однако они обладают фагоцитарной активностью. Клетки с противоположных краев вступают в контакт. Затем наступает кератинизация раневого эпидермиса и отделение корки, покрывающей рану. К моменту встречи эпидермиса противоположных краев в клетках, расположенных непосредственно вокруг края раны, наблюдается вспышка митозов, которая затем постепенно падает. По одной из версий, эта вспышка вызвана понижением концентрации ингибитора митозов - кейлона.

Эпиморфоз представляет собой наиболее очевидный способ регенерации, заключающийся в отрастании нового органа от ампутационной поверхности. Регенерация конечности тритона и аксолотля изучена детально. Выделяют регрессивную и прогрессивную фазы регенерации. Регрессивная фаза начинается с заживления раны, во время которого происходят следующие основные события: остановка кровотечения, сокращение мягких тканей культи конечности, образование над раневой поверхностью сгустка фибрина и миграция эпидермиса, покрывающего ампутационную поверхность.

Затем начинается разрушение остеоцитов на дистальном конце кости и других клеток. Одновременно в разрушенные мягкие ткани проникают клетки, участвующие в воспалительном процессе, наблюдается фагоцитоз и местный отек. Затем вместо образования плотного сплетения волокон соединительной ткани, как это происходит при заживлении ран у млекопитающих, в области под раневым эпидермисом утрачиваются дифференцированные ткани. Характерна остеокластическая эрозия кости, что является гистологическим признаком дедифференцировки. Раневой эпидермис, уже пронизанный регенерирующими нервными волокнами, начинает быстро утолщаться. Промежутки между тканями все более заполняются мезенхимоподобными клетками. Скопление мезенхимных клеток под раневым эпидермисом является главным показателем формирования регенерационной бластемы. Клетки бластемы выглядят одинаково, но именно в этот момент закладываются основные черты регенерирующей конечности. Затем начинается прогрессивная фаза, для которой наиболее характерны процессы роста и морфогенеза. Длина и масса регенерационной бластемы быстро увеличиваются. Рост бластемы происходит на фоне идущего полным ходом формирования черт конечности, т.е. ее морфогенеза. Когда форма конечности в общих чертах уже сложилась, регенерат все еще меньше нормальной конечности. Чем крупнее животное, тем больше эта разница в размерах. Для завершения морфогенеза требуется время, по истечении которого регенерат достигает размеров нормальной конечности.

Регенерация тканей (из другого источника)

Регенерация - восстановление утраченной или повреждённой дифференцированной структуры. Различают физиологическую регенерацию и репаративную регенерацию. Когда говорят о регенерации тканей, имеют в виду регенерацию клеток и клеточных типов. Физиологическая регенерация - естественное обновление структуры. В ходе жизнедеятельности на смену гибнущим клеткам приходят новые. В физиологической регенерации участвуют клетки всех обновляющихся популяций и образуемые ими тканевые структуры. Так, на смену закончившим жизненный цикл эпителиоцитам слизистой оболочки пищеварительного тракта постоянно приходят новые клетки. Репаративная регенерация - образование новых структур вместо пов- реждённых и на месте повреждённых. Признак репаративной регенерации - появление многочисленных малодифференцированных клеток со свойствами эмбриональных клеток зачатка регенерирующего органа или ткани. При репаративной регенерации какой-то структуры реконструируются процессы развития этой структуры в раннем онтогенезе. Например, формирование зрелой костной ткани на месте перелома кости протекает так же, как и при энхондральном остеогенезе. Характер клеточной популяции и регенерация. Характер клеточной популяции пов- реждённой структуры определяет возможность её регенерации. Репаративная регенерация возможна, если структура состоит из клеток обновляющейся популяции (эпителиальные клетки, клетки мезенхимного происхождения). Репаративная регенерация наступит также при наличии в ткани стволовых клеток и условий, разрешающих их дифференцировку. Например, при повреждении скелетной мышцы ткань восстанавливается за счёт дифференцировки стволовых клеток (клетки-сателлиты) в миобласты, сливающиеся в мышечные трубочки с последующим образованием мышечных волокон. Ткань, утратившая стволовые клетки, не имеет шансов к восстановлению. По этой причине не происходит репаративной регенерации миокарда после гибели кардиомиоцитов вследствие инфаркта или нейронов при травме.

Удивительно, но если хвост ящерицы отпадет, то недостающая его часть вновь сформируется из оставшейся. В некоторых случаях репаративная регенерация настолько совершенна, что весь многоклеточный организм восстанавливается лишь из небольшого фрагмента ткани. Наше тело самопроизвольно теряет клетки с поверхности кожи и замещает их вновь образованными. Это происходит именно из-за регенерации.

Виды регенерации

Репаративная регенерация - это естественная способность всех живых организмов. Она применяется для замены изношенных частей, обновления поврежденных и утраченных фрагментов или воссоздания тела из небольшого участка в период постэмбриональной жизни организма. Регенерация - это процесс, который включает в себя рост, морфогенез и дифференцировку. Сегодня все типы и виды репаративной регенерации активно используются в медицине. Такой процесс встречается не только у людей, но и у животных. Регенерация делится на два типа:

  • физиологическая;
  • репаративная.

Существует постоянная потеря многих структур нашего организма из-за износа и повреждений. Замена этих клеток обусловлена физиологической регенерацией. Примером такого процесса может служить обновление эритроцитов. Изношенные клетки кожи постоянно заменяются новыми.

Репаративная регенерация - это процесс восстановления утраченных или поврежденных органов и частей тела. В данном типе ткани образуются путем расширения прилегающих фрагментов.

  • Регенерация конечностей у саламандры.
  • Восстановление утраченного хвоста ящерицы.
  • Заживление раны.
  • Замена поврежденных клеток.

Разновидности репаративной регенерации. Морфаллаксис и эпиморфоз

Существуют различные типы репаративной регенерации. В нашей статье вы можете найти более подробную информацию о них. Регенерация эпиморфозного типа включает в себя дифференцировку взрослых структур с целью формирования недифференцированной массы клеток. Именно с этим процессом связано восстановление удаленного фрагмента. Примером эпиморфоза является регенерация конечностей у амфибий. В морфаллаксисном типе регенерация происходит в основном за счет перестановки уже существующих тканей и восстановления границ. Примером такого процесса является формирование гидры из небольшого фрагмента ее тела.

Репаративная регенерация и ее формы

Восстановление происходит благодаря распространению соседних тканей, которые заполняют собой молодые клетки с дефектом. В дальнейшем из них формируются полноценные зрелые фрагменты. Такие формы репаративной регенерации называют восстановлением.

Существует два варианта такого процесса:

  • Убыток возмещается тканью аналогичного типа.
  • Дефект заменяется новой тканью. Образуется рубец.

Регенерация костной ткани. Новый метод

В современном медицинском мире, репаративная регенерация костной ткани - это реальность. Такая техника наиболее часто используется в операции по пересадке костного трансплантата. Стоит отметить, что собрать достаточное количество материала для такой процедуры невероятно трудно. К счастью, новый операционный метод восстановления поврежденных костей возник.

Благодаря биомимикрии исследователи разработали новый метод восстановления костной структуры. Главная его цель - это использование кораллов морских губок в качестве каркасов или рам для костной ткани. Благодаря этому поврежденные фрагменты смогут восстанавливать себя самостоятельно. Кораллы идеально подходят для такого рода операций, потому что они легко интегрируются в существующие кости. Совпадает и их структура с точки зрения пористости и состава.

Процесс восстановления костной ткани при помощи кораллов

Для того чтобы восстановить используя новый метод, хирурги должны подготовить коралловые или морские губки. Им также необходимо подобрать такие вещества, как стромальные или костного мозга, которые способны стать любым другим адамантобластом в организме. Репаративная регенерация тканей - это достаточно трудоемкий процесс. В ходе операции губки и клетки вставляются в секцию поврежденной кости.

Со временем костные фрагменты либо восстанавливаются, либо стволовые адамантобласты расширяют существующую ткань. Как только кость срастается, коралл или становятся ее частью. Это происходит благодаря их сходству по строению и составу. Репаративная регенерация и способы ее осуществления изучаются специалистами со всего мира. Именно благодаря этому процессу можно справиться с некоторыми приобретенными недостатками организма.

Восстановление эпителия

Способы репаративной регенерации играют важную роль в жизни любого живого организма. Переходный эпителий - это многослойный покров, который характерен для мочеотводящих органов, таких как мочевой пузырь и почки. Они наиболее подвержены растяжениям. Именно в них между клетками расположены плотные контакты, которые предотвращают проникновение жидкости через стенку органа. Адамантобласты мочеотводящих органов быстро изнашиваются и ослабевают. Репаративная регенерация эпителиев происходит за счет содержания в органах стволовых клеток. Именно они сохраняют способность к делению на протяжении всего жизненного цикла. Со временем процесс обновления значительно ухудшается. С этим связаны многочисленные заболевания, которые возникают у многих с возрастом.

Механизмы репаративной регенерации кожных покровов. Их влияние на восстановление тела после ожоговых повреждений

Известно, что ожоги - это самая распространенная травма среди детей и взрослых. Сегодня тема такого травматизма необычайно популярна. Не секрет, что ожоговые повреждения могут не только оставить на теле рубец, но и стать причиной хирургического вмешательства. На сегодняшний день не существует такой процедуры, которая позволила бы полностью избавиться от полученного шрама. Это связано с тем, что механизмы репаративной регенерации изучены не до конца.

Различают три степени ожоговых повреждений. Известно, что более 4 миллионов человек страдают от повреждений кожи, которые появились после воздействия на нее пара, горячей воды или химического вещества. Стоит отметить, что рубцовая кожа не соответствует той, которую она заменяет. Отличается она и по своим функциям. Новообразованная ткань более слабая. Сегодня специалисты активно изучают механизмы репаративной регенерации. Они считают, что в скором времени смогут полностью избавить пациентов от ожоговых шрамов.

Уровень репаративной регенерации костной ткани. Оптимальные условия для процесса

Репаративная регенерация костной ткани и ее уровень определяются степенью повреждений в области перелома. Чем больше микротрещин и травм, тем медленнее будет протекать образование костной мозоли. Именно по этой причине специалисты отдают предпочтение методам лечения, которые не связаны с нанесением дополнительных повреждений. Наиболее оптимальные условия для репаративной регенерации в костных фрагментах - это неподвижность обломков и замедленная дистракция. В случае их отсутствия на месте перелома образуются соединительные волокна, которые в дальнейшем формируют

Патологическая регенерация

Физическая и репаративная регенерация играет важную роль в нашей жизни. Не секрет, что у некоторых такой процесс может быть замедлен. С чем это связано? Это и многое другое вы можете выяснить в нашей статье.

Патологическая регенерация - это нарушение восстановительных процессов. Существует два вида такого восстановления - гиперрегенерация и гипорегенерация. Первый процесс образования новой ткани ускоренный, а второй замедленный. Два этих вида являются нарушением регенерации.

Первые признаки патологической регенерации - это образование долгое заживление травм. Такие процессы возникают как следствие нарушения местных условий.

Как ускорить процесс физиологической и репаративной регенерации

В жизни каждого живого существа важную роль играет физиологическая и репаративная регенерация. Примеры такого процесса известны абсолютно каждому. Не секрет, что у некоторых пациентов достаточно долго заживают травмы. Любой живой организм должен иметь полноценный рацион, который включает в себя разнообразие витаминов, микроэлементов и полезных веществ. При недостатке питания возникает дефицит энергии, и нарушаются трофические процессы. Как правило, у пациентов развивается та или иная патология.

Для ускорения процесса регенерации необходимо в первую очередь удалить отмершие ткани и взять во внимание иные факторы, которые могут повлиять на восстановление. К ним можно отнести стрессы, инфекции, протезы, недостаток витаминов, и многое другое.

Для ускорения процесса регенерации специалист может назначить витаминный комплекс, анаболические средства и биогенные стимуляторы. В домашней медицине активно используется облепиховое масло, каротолин, а также соки, настойки и отвары лекарственных трав.

Мумие для ускорения регенерации

К репаративной регенерации относят полное или частичное восстановление поврежденных тканей и органов. Ускоряет ли такой процесс мумие? Что это такое?
Известно, что мумие используют уже на протяжении 3 тысяч лет. Это биологически активное вещество, которое вытекает из расщелин скал южных гор. Его месторождение встречается в более чем 10 странах мира. Мумие представляет собой клейкую массу темно-коричневого цвета. Вещество хорошо растворяется в воде. В зависимости от места сбора состав мумие может отличаться. Тем не менее абсолютно в каждом из них содержится витаминный комплекс, ряд минеральных веществ, эфирные масла и пчелиный яд. Все эти компоненты способствуют быстрому заживлению ран и травм. Они также улучшают реакцию организма на неблагоприятные условия. К сожалению, препарата на основе мумие для ускорения регенерации нет, поскольку вещество плохо поддается обработке.

Регенерация у животных. Общая информация

Как мы говорили ранее, процесс регенерации происходит в абсолютно любом живом организме, в том числе и у животного. Стоит отметить, что чем выше оно организованно, тем хуже в его организме проходит восстановление. У животных репаративной регенерацией является процесс воспроизведения утерянных или поврежденных органов и тканей. Простейшие организмы восстанавливают свое тело только при наличии ядра. В случае если оно отсутствует, то утерянные части не воспроизводятся.

Существует мнение, что чижи могут восстанавливать свои конечности. Однако данная информация не подтверждена. Известно, что млекопитающие и птицы восстанавливают только ткани. Тем не менее процесс не изучен до конца.
Легче всего у животных восстанавливается нервная и мышечная ткань. В большинстве случаев новые фрагменты образуются за счет остатков старых. У амфибий было замечено значительное увеличение регенерирующих органов. Подобное встречается и у ящериц. Например, вместо одного хвоста вырастают два.

Проведя целый ряд исследований, ученые доказали, что если ящерице отрезать хвост наискось и задеть при этом не один, а два или более позвоночников, то у рептилии вырастет 2-3 хвоста. Встречаются также случаи, когда у животного может восстановиться орган не там, где он был расположен ранее. Удивительно, но путем регенерации может быть также воссоздан орган, которого не было раньше в теле того или иного существа. Такой процесс называется гетероморфозом. Все способы репаративной регенерации необычайно важны не только для млекопитающих, но и для птиц, насекомых, а также одноклеточных.

Подводим итоги

Каждому из нас известно, что ящерицы с легкостью могут полностью восстановить свой хвост. Далеко не все знают, почему это происходит. Физиологическая и репаративная регенерация играет важную роль в жизни каждого. Для ее восстановления можно использовать как лекарственные препараты, так и домашние методы. Одним из лучших средств считается мумие. Оно не только ускоряет процесс регенерации, но улучшает общий фон организма. Будьте здоровы!