Окислительные процессы в клетке и внеклеточном матриксе. Матрикс, внеклеточный

Межклеточные контакты представляют собой специализированные белковые комплексы благодаря которым соседние клетки вступают во взаимный контакт и сообщаются друг с другом

Внеклеточный матрикс представляет собой плотную сеть, состоящую из белков, которая расположена между клетками и образована ими самими

Клетки экспрессируют рецепторы для белков внеклеточного матрикса

Белки внеклеточного матрикса и межклеточные контакты контролируют трехмерную организацию клеток в ткани, а также их рост, подвижность, форму и дифференцировку

Одним из наиболее важных событий в эволюции живых существ было появление многоклеточных организмов . Когда клетки выработали способ группироваться вместе, они приобрели способность образовывать сообщества, в которых различные клетки специализированы по функциям. Если, например, два одноклеточных организма «объединяют усилия», можно представить себе, что каждый из них будет специализироваться на выполнении определенных функций, необходимых для успешного роста и размножения, а остальные оставит своему партнеру.

Для образования простого многоклеточного организма или ткани более сложного организма клетки должны надежно прикрепляться друг к другу. Как показано на рисунке ниже, для клеток животных это прикрепление может достигаться тремя путями. Во-первых, клетки непосредственно прикрепляются друг к другу посредством образования межклеточных контактов, которые представляют собой специальные модификации клеточной поверхности соседних клеток. Эти контакты видны в электронном микроскопе. Во-вторых, клетки могут взаимодействовать между собой без формирования контактов, используя белки, которые не образуют такие специализированные области. В-третьих, клетки соединяются между собой непрямым образом, прикрепляясь к сети внеклеточного матрикса (ВКМ), который содержит молекулы, расположенные в межклеточной среде.

Прикрепление клеток происходит за счет образования контактов их поверхности с внеклеточным матриксом.

Однако формирование многоклеточного организма представляет собой не такую простую задачу, как скрепление нескольких клеток друг с другом. Правильное функционирование таких сообществ клеток обеспечивается их эффективным взаимодействием и разделением труда между ними. Межклеточные контакты представляют собой высокоспециализированные области, в которых клетки соединяются между собой посредством белковых комплексов, связанных с мембранами. Известно несколько различных типов межклеточных контактов, каждый из которых выполняет специфическую роль в сообщении клеток между собой.

Белки, образующие щелевые контакты , дают возможность клеткам непосредственно сообщаться друг с другом, образуя каналы, через которые происходит обмен малыми цитоплазматическими молекулами. Белки, формирующие плотные контакты, служат селективным барьером, который регулирует прохождение молекул через слой клеток и препятствует диффузии белков в плазматической мембране. Адгезивные контакты и десмосомы формируют механическую устойчивость, связывая цитоскелет контактирующих клеток, в результате чего слой клеток может функционировать как единое целое. Эти контакты могут служить передатчиками сигналов, переводя изменения клеточной поверхности в биохимические сигналы, которые распространяются по клетке.

Схемы строения межклеточных контактов эпителиальных клеток (слева),
контактных адгезивных комплексов клеток неэпителиального происхождения (справа) и комплексов клеток с внеклеточным матриксом (внизу).
Показаны также основные классы компонентов (ВКМ).

Известны также различные типы белков, которые участвуют в бесконтактном взаимодействии клеток . К таким белкам относятся интегрины, кадерины, селектины и родственные иммуноглобулинам молекулы, обеспечивающие адгезию клеток.

Все клетки, даже самые примитивные одноклеточные организмы , обладают функциями узнавания внешнего окружения и взаимодействия с ним. Даже до появления клеточных сообществ клетки должны были прикрепляться к поверхности и перемещаться по ней. Таким образом, адгезивные структуры клеточного матрикса сформировались рано в эволюции. Как показано на рисунке ниже, у многоклеточных организмов пространство между клетками заполнено плотной структурой, состоящей из белков и сахаров, которая называется внеклеточным матриксом. Внеклеточный матрикс организован в виде волокон, слоев и пленочных структур.

В некоторых тканях внеклеточный матрикс находится в виде сложных слоев, которые называются базальной ламиной и непосредственно контактируют с клетками. Белки, входящие в состав внеклеточного матрикса, бывают двух типов: структурные гликопротеины, например коллаген и эластин, и протеогликаны. Эти белки придают тканям прочность и эластичность, а также служат селективным фильтром, контролирующим поток нерастворимых компонентов между клетками. Протеогликаны проявляют гидрофильные свойства и поддерживают между клетками водное окружение. Когда клетки мигрируют, внеклеточный матрикс функционирует как опорная структура, обеспечивающая их передвижение.

Клетки секретируют компоненты внеклеточного матрикса . Они сами образуют эту наружную опорную систему, и при необходимости могут изменять ее форму за счет деградации и замены окружающих участков матрикса. В настоящий момент вопросы контроля сборки и деградации внеклеточного матрикса представляют существенный интерес, поскольку они играют важную роль в развитии многоклеточных организмов, в заживлении ран, а также в образовании злокачественных опухолей.

Контакты клеток с внеклеточным матриксом образуются за счет рецепторных белков клеточной поверхности, которые, собираясь вместе, формируют на поверхности клеток структуры типа островков (patch) и которые связывают внеклеточный матрикс, расположенный с наружной стороны плазматической мембраны с цитоскелетом со стороны цитозоля. Так же как в случае некоторых межклеточных контактов, некоторые из этих белков образуют упорядоченные комплексы, соединяющие клеточную поверхность с цитоскелетом. Эти белки обладают гораздо более широкими функциями, чем просто «клеточные присоски»; они также участвуют во многих процессах передачи сигналов и обеспечивают клеткам возможность сообщаться друг с другом.

Различные клетки вместе со своим внеклеточным матриксом формируют ткани, для которых характерна высокая степень специализации. Хрящевая, костная и другие виды соединительной ткани могут противостоять сильной механической нагрузке, в то время как другие, например ткань, формирующая легкие, не отличаются прочностью, однако являются высокоэластичными. Баланс между прочностью, эластичностью и трехмерной структурой тщательно регулируется, и компоненты каждой ткани выполняют свои функции во взаимодействии друг с другом. Таким образом, организация и состав ткани соответствуют функции, выполняемой органом; например, мышцы совершенно отличаются от кожи, и слава Богу!

Межклеточные контакты и прикрепление клеток к матриксу не ограничены только клеточной поверхностью. Во многих случаях белки должны быть заякорены в мембране достаточно сильно для того, чтобы противостоять механическим усилиям. Для этого требуется их связывание с цитоскелетом, что в основном обеспечивает клетке структурную поддержку. Наличие цитоскелета также предотвращает латеральное смещение рецепторов в плоскости мембраны, «удерживая» их на своих местах. Наряду с этим, процессы передачи сигнала регулируют сборку межклеточных контактов и поддерживают их. Цитоскелет и сигнальные механизмы играют существенную роль в клеточной адгезии.

Межклеточный матрикс - это надмолекулярный комплекс, образованный сложной сетью связанных между собой макромолекул.

В организме межклеточный матрикс формирует такие высокоспециализированные структуры, как хрящ, сухожилия, базальные мембраны, а также (при вторичном отложении фосфата кальция) кости и зубы. Эти структуры различаются между собой как по молекулярному составу, так и по способам организации основных компонентов (белков и полисахаридов) в различных формах межклеточного матрикса.

Химический состав межклеточного матрикса

В состав межклеточного матрикса входят: 1). Коллагеновые иэластиновые волокна . Они придают ткани механическую прочность, препятствуя ее растяжению; 2).аморфное вещество в виде ГАГ и протеогликанов. Оно удерживает воду и минеральные вещества, препятствует сдавливанию ткани; 3).неколлагеновые структурные белки - фибронектин, ламинин, тенасцин, остеонектин и др. Кроме того, в межклеточном матриксе может присутствоватьминеральный компонент - в костях и зубах: гидроксиапатит, фосфаты кальция, магния и т.д. Он придает механическую прочность костям, зубам, создает запас в организме кальция, магния, натрия, фосфора.

Функция межклеточного матрикса

Межклеточный матрикс выполняет в организме разнообразные функции:

    образует каркас органов и тканей;

    является универсальным «биологическим» клеем;

    участвует в регуляции водно-солевого обмена;

    образует высокоспециализированные структуры (кости, зубы, хрящи, сухожилия, базальные мембраны).

    окружая клетки, влияет на их прикрепление, развитие, пролиферацию, организацию и метаболизм.

1. Коллаген

Коллаген - фибриллярный белок, основной структурный компонент межклеточного матрикса. Коллаген обладает огромной прочностью (Коллаген прочнее стальной проволоки того же сечения, он может выдерживать нагрузку в 10000 раз большую собственного веса) и практически не растяжим. Это самый распространенный белок организма, на него приходиться от 25 до 33% общего количества белка в организме, т.е. 6% массы тела. Около 50% всех коллагеновых белков содержится в тканях скелета, около 40% - в коже и 10% - в строме внутренних органов.

Строение коллагена

Под коллагеном понимают два вещества: тропоколлаген и проколлаген.

Молекула тропоколлагена состоит из 3 α-цепей. Известно около 30 видов α-цепей, отличающихся между собой аминокислотным составом. Большинство α-цепей содержит около 1000АК. В тропоколлагене содержится 33% глицина, 25% пролина и 4-оксипролина, 11% аланина, есть гидроксилизин, мало гистидина, метионина и тирозина, нет цистеина и триптофана.

    Первичная структура α-цепей состоит из повторяющейся аминокислотной последовательности: Глицин- X - Y . ВX положении чаще всего находиться пролин, а вY – 4-оксипролин или 5-оксилизин.

    Пространственная структура α-цепи представлена левозакрученной спиралью в витке которой находиться 3 АК.

    3 α-цепи скручиваются друг с другом в правозакрученную суперспираль тропоколлагена . Она стабилизируется водородными связями, радикалы АК направлены наружу.

Молекула проколлагена устроена также как и тропоколлагена, но на ее концах находятсяС- и N -пропептиды, образующие глобулы. N-концевой пропептид состоит из 100АК, С-концевой пропептид – из 250АК. С- иN-Протеопептиды содержат цистеин, который через дисульфидные мостики образует глобулярную структуру.

Внеклеточный матрикс (~25% массы тела) представляет собой "решетку" из высокополимерных сахаров. Он функционирует как транзитный участок и "молекулярное сито" между кровью и специализированными клетками ткани. Функционирование матрикса обеспечивает удаление продуктов обмена клеток и других токсинов.

Давайте проследим изменения в связанные с открытием интегральной роли внеклеточного матрикса.

В таблице 1957 г. понятия внеклеточного матрикса, не было, т.к. концепция Системы регуляции Пишингера была разработана чуть позже.

Рекевег был знаком с работами Пишингера, ссылался на них, и придавал большое значение роли состояния мезенхимы в развитии заболеваний и учитывал воздействие на нее в терапевтических целях. Сам же термин матрикс был введен в Таблицу шести фаз в начале 1990-х годов.

Обратите внимание на ОЧЕНЬ ВАЖНЫЙ МОМЕНТ - матрикс составляет около 25% массы тела человека (!). Это позволяет (условно) считать его отдельным «органом». Поэтому, зная функции матрикса, не учитывать его состояние и не корригировать его при лечении любых заболеваний просто НЕ ВОЗМОЖНО! Не делая этого, специалист не имеет права говорить о полноценной патогенетической терапии!

Иногда путают понятия «матрикс» и «межклеточное пространство». Матрикс - это решетка из высокополимерных сахаров - основное вещество . Внеклеточный матрикс - это зона трансмиссии - передачи информации (сигналов) от регуляторных систем организма к клетками. Нервы, капилляры, лимфатические сосуды - все они заканчиваются или начинаются во внеклеточном матриксе. Ни один из них не заканчивается и не берет свое начало в клетке. Взаимодействие различных систем (НС, ССС, иммунной, эндокринной) происходит посредством обмена нейротрансмиттерами, которые управляются внеклеточным матриксом. Клетка окружена внеклеточным матриксом, и качество ее функционирования зависит от чистоты внеклеточного матрикса и его трансмиссионных способностей.

Межклеточное пространство и матрикс еще называют транзитным участком или «молекулярным ситом», т.к. через него осуществляется транспорт питательных веществ и кислорода из крови к клеткам, а из клеток в кровь опять же через него поступают метаболиты, токсины и углекислый газ. Также через него из крови к рецепторам клеток движутся гормоны, а от нервных окончаний - медиаторы.

Более подробно о функциях мезенхимы и матрикса можно прочитать в статьях: Боллинг Д.: Пишингер: научное обоснование акупунктуры и гомотоксикологии // Биологическая терапия. - №4. - 1997. - С.10-11. Адельверер Н.: Матрикс, значение рН и окислительно-восстановительный потенциал // Биологическая Медицина.- №2.- 2003.- с.9-10

На рисунке выше представлена структура матрикса (молекулярной решетки). Внеклеточный матрикс представляет собой тонкую трехмерную решетку протеогликанов и гликозаминогликанов. Протеогликаны состоят из молекул гиалуроновой кислоты, на которых при помощи связующих белков (трисахаридов) закрепляется коровый (core) протеин. По горизонтали в виде древовидной структуры крепятся поперечные белки, которые являются носителями дисахаридных звеньев (гликозаминогликанов, например, хондроитин сульфат).

Высокополимерные сахара (хондроитин сульфат, кератан сульфат - изображены в виде иголочек) притягивают к себе молекулы воды, образуя гидратные оболочки. Гомотоксины «застревают» («набиваются») между иголочками (сахарами) и тоже образуют гидратные оболочки. В связи с этим матрикс набухает и переходит из жидкостного состояния (золя) в состояние геля (желеобразное).

Внимание! Это важно! «Загрязнение» матрикса (набухание и переход в гелеобразное состояние) затрудняет и нарушает транспорт веществ через матрикс, а также передачу регуляторных сигналов!

Различные состояния матрикса

Здоровье и качество жизни пациента находятся в прямой зависимости от чистоты межклеточного матрикса и своевременности передачи регуляторных сигналов.

В здоровом состоянии матрикс находится в состоянии золя, при этом его структура однородная и равномерная (при гистологическом исследовании).

Под действием же различных вредных факторов в матриксе происходит накопление («застревание») гомотоксинов, показатель рН изменяется в сторону закисления; высокополимерные сахара притягивают к себе молекулы воды, образуя гидратные оболочки. Гомотоксины «застряют» («набиваются») между иголочками и тоже образуют гидратные оболочки. В связи с этим матрикс набухает и переходит из состояния золя в гель. Его структура местами уплотняется и становится неоднородной (что видно при гистологическом исследовании). В результате этого происходит замедление метаболизма - затрудняется доступ к клетке питательных веществ и кислорода, а также обратное выведение метаболитов и углекислого газа.

Описанный процесс происходит в фазах до биологического барьера.

За биологическим барьером все сложнее, т.к. гомотоксины образуют химические связи с сахарами (т.е. происходит их полимеризация со структурами матрикса) и их просто так уже не вывести. Хронические заболевания являются следствием продолжительной неспособности организма должным образом справляться с токсинам во внеклеточном, а затем и во внутриклеточном матриксе.

В такой ситуации необходимо использовать препараты, обладающие деполимеризирующим эффектом, те которые могут разрывать эти связи (среди антигомотоксических препаратов (АГТП) такие препараты есть!). помогает эффективно бороться с данной ситуацией!

Дополнительная информация

При дальнейшем накоплении во внеклеточном матриксе и поступлении гомотоксинов внутрь клетки, поражаются органеллы клетки, в частности - митохондрии, что приводит к сдвигу гомеостаза клетки в сторону анаэробного гликолиза и кислотно-щелочного равновесия - в кислую сторону. Клетка начинает функционировать в условиях энергетического дефицита, связанного с переходом на гликолиз, митохондриями передается информация в ядро для синтеза митохондриальной РНК, с целью увеличения количества митохондрий. Практически нет возможности для прохождения этой информации без искажений, поэтому неспецифически активизируется клеточное деление и клетка переходит к бесконтрольному размножению, образуется злокачественная опухоль. Для клетки опухоли характерны процессы анаэробного гликолиза, в результате которого внутри клеток образуется избыток лактата, возникает ацидоз. С помощью активных механизмов кислота удаляется во внеклеточное пространство. В условиях внеклеточного ацидоза матрикс структурно перестраивается, он становится механически менее проницаемым для иммунокомпетентных клеток, к тому же в кислой среде их метаболизм и функциональная активность снижается.

Дополнительная информация из химии: Золь - коллоидная система с жидкой непрерывной фазой и твердой дисперсной фазой, представленной частицами диаметром 0,1 - 0,001ц. Гель - студенистое состояние вещества (Словарь по геологии нефти, 1952). Гели (от лат. gelo - застываю) - дисперсные системы с жидкой или газообразной дисперсионной средой, обладающие некоторыми свойствами твердых тел: способностью сохранять форму, прочностью, упругостью, пластичностью. Эти свойства геля обусловлены существованием у них структурной сетки (каркаса), образованной частицами дисперсной фазы, которые связаны между собой молекулярными силами различной природы.

МАТРИКС - "поле", на котором по пути к клетке сходятся все регуляторные сигналы

Важно помнить об интегральной роли матрикса - места, где «сходятся» все регуляторные сигналы иммунно-нейро-эндокринной системы. От их адекватного взаимодействия зависит благополучие всего организма.

Молекулярная решетка матрикса преодолевается всеми веществами, участвующими в метаболизме, то есть играет роль «транзитного участка». Так как в матриксе заканчиваются вегетативные нервные волокна, то по нервным путям он связан с центральной нервной системой (ЦНС). Также в матриксе начинаются лимфатические сосуды и сквозь матрикс проходят кровеносные сосуды (капилляры), поэтому посредством гормонов он соединен и с эндокринной системой (прежде всего, с гипофизом, щитовидной железой и надпочечниками). Как известно, ЦНС и эндокринная системы взаимодействуют друг с другом в стволе головного мозга (гипоталамусе). В матриксе также имеются иммунокомпетентные клетки.

В матриксе взаимодействуют все три основные системы регуляции организма - нервная, эндокринная и иммунная. Матрикс пронизывает внеклеточное пространство организма и выполняет функцию молекулярной решетки, окружающей и поддерживающий клетки, и играет основную роль, как интегральная часть энергетически открытой системы организма.

Остеокласты

Остеоциты

Остеобласты

КЛЕТКИ КОСТНОЙ ТКАНИ

ФункциИ костной ткани

ЛЕКЦИЯ №

Тема: Биохимия костной ткани

Факультеты: стоматологический.

Костная ткань является разновидностью соединительной ткани с высокой минерализацией межклеточного вещества.

1. Формообразующая

2. Опорная (фиксация мышц, внутренних органов)

3. Защитная (грудная клетка, череп и т.д.)

4. Запасающая (депо минеральных веществ: кальция, магния, фосфора, натрия и т.д.).

5. Регуляция КОС (при ацидозе отдает Na + , Ca 3 (PO 4) 2)

В организме человека выделяют 2 типа костной ткани: ретикулофиброзная (губчатое костное вещество) и пластинчатая (компактное костное вещество). Из них образованы различные виды костей: трубча­тые, губчатые и т. п.

Как и любая ткань, костная ткань состоит из клеток и межклеточного матрикса.

В костной тканивыделяются 2 типа клеток мезенхимального происхождения.

1 тип:

а) стволовые остеогенные клетки;

б) полустволовые стромальные клетки;

в) остеобласты (из них образуются остеоциты);

г) остеоциты;

2 тип:

а) стволовые кроветворные клетки;

б) полустволовые кроветворные клетки (из них образуются миелоидные клетки, макрофаги);

в) унипотентная колонеообразующая моноцитарная клетка (из нее образуется монобласт → промоноцит → моноцит → остеокласт);

Молодые, не делящиеся клетки, создающие костную ткань. Имеют различную форму: кубическую, пирамидальную, угловатую. Содержат 1 ядро. В цитоплазме хорошо развиты широховатая ЭПС, митохондрии и комплекс Гольджи. В клетке много РНК, высокая активность щелочной фосфатазы, активен биосинтез белка (коллагена, протеогликаны, ферменты).

Встречаются только в глубоких слоях надкостницы и в местах регенерации костной ткани. Покрывают всю поверхность развивающейся костной балки.

Преобладающие клетки костной ткани, образуются из остеобластов. Не способны к делению, имеют отросчатую форму, крупное ядро в центре клетки, содержат мало органелл, не имеют центриолей. Располагаются в лакунах, вырабатывают компоненты межклеточного вещества.

Гигантские многоядерные клетки гематогенной природы. В клетке выделяют 2 зоны. В клетке много вакуолей, митохондрий, лизосом. Немного рибосом, слабо развит шероховатый ЭПС.

Активность остеокластов регулируются Т-лимфоцитами через цитокины. Остеокласты способны разрушать обызвествленный хрящ или кость. Они выделяют в межклеточную жидкость СО 2 и карбоангидразу. Н 2 О + СО 2 = Н 2 СО 3 Накопление кислот приводит разрушение кальциевых солей и органической матрицы.


В состав межклеточного матрикса костной ткани входят органические и неорганические вещества. В компактной кости неорганический компонент составляет 70% массы кости, органический компонент - 20% массы кости, вода – 10% массы кости. При этом по объе­му на неорганический компонент приходится только около ¼ кости; остальную часть занимает органический компонент и вода.

В губчатой костной ткани неорганический компонент составляет 33-40% массы кости, органический компонент - 50% массы кости, вода – 10% массы кости.

Органический компоненткостной ткани состоит в основном (90-95%) из коллагеновых волокон (коллаген 1 типа), которые содержат много оксипролина, лизина, фосфата, связанного с серином, и мало гидроксилизина.

Органический компонент костной ткани содержит незначительное количество протеогликанов и ГАГ. Основным представителем является хондроитин-4-сульфат, немного хондроитин-6-сульфата, кератансульфата, гиалуроновой кислоты.

В костной ткани находятся неколлагеновые структурные белки остеокальцин, остеонектин, остеоронтин и др. Остеонектин является посредником кальцификации, он связывает кальций и фосфор с коллагеном. Пептид (49АК), содержащий 3 остатка γ-карбоксиглутаминовой кисло­ты. В синтезе этого пептида участвует витамин К, он обеспечивает карбоксилирование глутаминовой кислоты.

В косной ткани содержатся ферменты: щелочная фосфатаза (много в растущих костях), кислая фосфатаза (мало), коллагеназа, пирофосфатаза. Фосфотазы выделяют фосфат из органических соединений. Пирофосфатаза разрушает пирофосфат, который является ингибитором кальцификации.

Также органический компонент представлен различными органическими кислотами фумаровой, яблочной, молочной и т.д. Присутствуют липиды.

Минеральный компонент костной ткани взрослого человека состоит глав­ным образом из гидроксиапатита (приблизительный состав Са 10 (РО 4) 6 (ОН) 2), кроме того, он включает фосфаты кальция (Са 3 (РО 4) 2), магния (Mg 3 (РО 4) 2), карбонаты, фториды, гидроксиды, цитраты (1%) и т.д. В состав костей входит большая часть Mg 2+ , около четверти Na + и небольшая часть К + , содержа­щихся в организме. У детей раннего возраста в минеральном компоненте костной ткани преобладает аморфный фосфат кальция (Са 3 (РО 4) 2), он является лабильным резервом кальция и фосфора.

Кри­сталлы гидроксиапатита имеют форму пластинок или палочек толщиной около 8-15Å, шириной 20-40Å, длиной 200-400Å. В кристаллической решетке гидроксиапатита Са 2+ может замещаться другими двухвалентными катионами. В растущую кристал­лическую решетку гидроксиапатита могут внедряться ионы тяжелых металлов: свинец, радий, уран и тяжелые элементы, образующиеся при рас­паде урана, например стронций.

Анионы, отличные от фосфата и гидроксила, либо адсорбируются на большой поверхности, образуемой малень­кими кристаллами либо растворяются в гидратной оболочке кри­сталлической решетки. Ионы Na + адсорбируются на поверхности кристаллов.

Между собой кри­сталлы гидроксиапатита связываются через Са 2+ с помощью остатков γ-карбоксиглутаминовой кисло­ты пептида (49 АК).

Вследствие кристаллической структуры образованной органическими и неорганическими компонентами модуль упругости кости сходен с бетоном.