Жизнь на других планетах. Зарождение жизни на Земле: теории, гипотезы, концепции Жизнь на других планетах обязательно есть доказательства

Вероятность существования жизни на других планетах определяется масштабами Вселенной. То есть чем больше Вселенная, тем больше вероятность случайного возникновения жизни где-нибудь в ее отдаленных уголках. Так как согласно современным классическим моделям Вселенной она является бесконечной в пространстве, кажется, что вероятность существования жизни на других планетах стремительно растет. Подробнее данный вопрос будет рассмотрен ближе к концу статьи, так как начать придется с представления самой инопланетной жизни, определение которой довольно размыто.

По некой причине до недавнего времени у человечества сложилось четкое представление инопланетной жизни в форме серых гуманоидов с большими головами. Однако, современные кинофильмы, литературные произведения, следуя за развитием самого научного подхода к этому вопросу, все более выходят за рамки указанных выше представлений. Действительно, Вселенная довольно разнообразна и, учитывая сложную эволюцию человеческого вида, вероятность возникновения схожих форм жизни на разных планетах с разными физическими условиями – крайне мала.

Прежде всего следует выйти за рамки представления жизни таковой, какой она есть на Земле, так как мы рассматриваем жизнь на других планетах. Оглядываясь вокруг, мы понимаем, что все известные нам земные формы жизни являются именно такими не просто так, а в силу существования на Земле некоторых физических условий, пару из которых мы и рассмотрим далее.

Гравитация


Первым и наиболее явным земным физическим условием является . Чтобы гравитация на другой планете была точно такой же, ей понадобится точно такая же масса и такой же радиус. Чтобы это было возможно, вероятно другая планета должна состоять из тех же элементов, что и Земля. Для этого потребуется также ряд других условий, в результате соблюдения которых вероятность обнаружения такого «клона Земли» стремительно падает. По этой причине, если мы намеренны отыскать все возможные внеземные формы жизни, следует предполагать о возможности их существования на планетах с несколько иной гравитацией. Конечно, для гравитации должен быть определен некоторый диапазон, такой чтобы удерживать атмосферу и при этом на расплющить все живое на планете.

В границах этого диапазона возможны самые различные формы жизни. Прежде всего гравитация влияет на рост живых организмов. Вспоминая самую известную гориллу в мире – Кинг-Конга, следует отметить, что он не выжил бы на Земле, так как умер бы под давлением собственного веса. Причиной этому служит закон квадрата-куба, согласно которому с увеличением тела в два раза, его масса увеличивается в 8 раз. Поэтому если мы рассматриваем планету с пониженной гравитацией – следует ожидать обнаружение форм жизни в крупных размерах.

Также от силы гравитации на планете зависит крепость скелета и мышц. Вспоминая еще один пример из мира животных, а именно самое большое животное – синего кита, отметим, что в случае попадания его на сушу кит задыхается. Однако происходит это не потому, что они задыхаются словно рыбы (киты – млекопитающие, а посему они дышат не жабрами, а легкими, как и люди), а потому, что сила тяжести мешает их легким расширяться. Из этого следует, что в условиях повышенной гравитации человек обладал бы более крепкими костьми, способными удержать массу тела, более крепкими мышцами, способными противодействовать силе тяжести, и меньшим ростом для понижения собственно самой массы тела согласно закону квадрата-куба.

Перечисленные физические характеристики тела, зависящие от гравитации, — это лишь наши представления о влиянии силы тяжести на организм. На самом деле гравитация может определять значительно больший диапазон параметров тела.

Атмосфера

Другим глобальным физическим условием, определяющим форму живых организмов, является атмосфера. Прежде всего наличием атмосферы сознательно сузим круг планет с возможностью жизни, так как ученым не удается представить организмы, способные выживать без вспомогательных элементов атмосферы и при убийственном влиянии космической радиации. Поэтому предположим, что планета с живыми организмами должна обладать атмосферой. Сперва рассмотрим атмосферу с содержанием кислорода, к которому мы все так привыкли.

Рассмотрим к примеру насекомых, размер которых явно ограничен из-за особенностей дыхательной системы. Она не включает легкие и состоит из тоннелей трахей, выходящих наружу в виде отверстий — дыхалец. Подобная тип транспортировки кислорода не позволяет иметь насекомым массу более 100 грамм, так как при больших размерах теряет свою эффективность.

Каменноугольный период (350-300 млн. лет до нашей эры) характеризовался повышенным содержанием кислорода в атмосфере (на 30-35%), и присущие тому времени животные могут Вас удивить. А именно, гигантские дышащие воздухом насекомые. К примеру, стрекоза Meganeura могла иметь размах крыльев более 65-ти см, скорпион Pulmonoscorpius достигать 70-ти см, а многоножка Arthropleura — 2,3 метра в длину.

Таким образом, становится очевидно влияние концентрации кислорода в атмосфере на диапазон различных форм жизни. Кроме того, наличие кислорода в атмосфере не есть твердым условием для существования жизни, так как человечеству известны анаэробы – организмы, способные жить без потребления кислорода. Тогда если влияние кислорода на организмы столь высоко, какова же будет форма жизни на планетах со совершенно другим составом атмосферы? – сложно представить.

Так перед нами возникает немыслимо большой набор форм жизни, которые могут нас ожидать на другой планете, учитывая лишь два перечисленных выше фактора. Если же рассматривать и другие условия, вроде температуры или атмосферного давления, то разнообразие живых организмов выходит за рамки восприятия. Но и в этом случае ученые не боятся делать более смелые предположения, определяемые в альтернативной биохимии:

  • Многие убеждены, что все формы жизни могут существовать лишь при наличии в их составе углерода, так как это наблюдается на Земле. Данное явление в свое время Карл Саган назвала как «углеродный шовинизм». Но на самом деле основным строительным элементом инопланетной жизни может быть совсем не углерод. Среди альтернатив углероду ученые выделяют кремний, азот и фосфор или азот и бор.
  • Фосфор – также один из основных элементов, составляющих живой организм, так как входит в состав нуклеотидов, нуклеиновых кислот (ДНК и РНК) и прочих соединений. Однако, в 2010-м году астробиолог Фелиса Вольф-Саймон обнаружила бактерию, во всех клеточных компонентах которой фосфор заменяется мышьяком, к слову токсичным для всех других организмов.
  • Вода – один из важнейших компонентов для жизни на Земле. Однако, и воду можно заменить иным растворителем, согласно исследованиям ученых, это может быть аммиак, фтороводорот, цианистый водород и даже серная кислота.

Зачем же мы рассматривали вышеописанные возможные формы жизни на других планетах? Дело в том, что с увеличением разнообразия живых организмов размываются границы самого термина жизни, который, к слову, до сих пор не имеет явного определения.

Понятие инопланетной жизни

Так как предметом данной статьи есть не разумные существа, а живые организмы, следует определить понятие «живого». Как оказалось, это достаточно сложная задача и существует более 100 определений жизни. Но, дабы не углубляться в философию, пойдем по следам ученых. Наиболее широкое понятие жизни должны иметь химики и биологи. Исходя из привычных признаков жизни, вроде размножения или питания, к живым существам можно приписать некоторые кристаллы, прионы (инфекционные белки) или вирусы.

Доподлинное определение границы между живым и неживым организмом должно быть сформулировано прежде, чем возникнет вопрос о существовании жизни на других планетах. Биологи считают такой пограничной формой – вирусы. Сами по себе, не взаимодействуя с клетками живых организмов, вирусы не обладают большинством привычных нам характеристик живого организма и представляют из себя лишь частицы биополимеров (комплексы органических молекул). Например, они не имеют обмена веществ, для их дальнейшего размножения потребуется какая-то клетка-хозяин, принадлежащая другому организму.

Таким образом можно условно провести грань между живыми и неживыми организмами проходит через обширный слой вирусов. То есть обнаружение вирусоподобного организма на другой планете может стать как подтверждением существования жизни на других планетах, так и еще одним полезным открытием, однако не подтверждающим указанное предположение.

Согласно вышесказанному, большинство химиков и биологов склоняются к тому, что основным признаком жизни есть репликация ДНК – синтез дочерней молекулы на основе родительской молекулы ДНК. Имея такие взгляды на инопланетную жизнь, мы значительно отдалились от уже избитых образов зеленых (серых) человечков.

Однако проблемы определения объекта как живого организма могут возникнуть не только с вирусами. Учитывая указанное ранее разнообразие возможных видов живых существ, можно представить ситуацию, когда человек столкнется с некоторой инопланетной субстанцией (для простоты представления – размеров порядка человека), и поставит вопрос о жизни этой субстанции, — поиск ответа на этот вопрос может оказаться таким же затруднительным, как и в случае с вирусами. Данная проблема просматривается в произведении Станислава Лема «Солярис».

Внеземная жизнь в Солнечной системе

Kepler — 22b-планета с возможной жизнью

Сегодня критерии поиска жизни на других планетах довольно строгие. Среди них в приоритете: наличие воды, атмосферы, и температурных режимов, схожих с земными. Для обладания указанными характеристиками планета должна находиться в так называемой «обитаемой зоне звезды» — то есть на определенном расстоянии от звезды, в зависимости от типа этой звезды. Среди наиболее популярных можно отметить: Глизе 581 g, Kepler-22 b, Kepler-186 f, Kepler-452 b и другие. Однако, сегодня о наличии жизни на таких планетах можно лишь гадать, так как слетать к ним удастся совсем не скоро, в силу огромного расстояния до них (одна из ближайших Глизе 581 g, до которой 20 световых лет). Поэтому вернемся в нашу Солнечную систему, где на самом деле также есть признаки неземной жизни.

Марс

Согласно критериям существования жизни, некоторые из планет Солнечной системы обладают подходящими условиями. Например, на Марсе был обнаружен сублимирующийся (испаряющийся) – шаг на пути к обнаружению жидкой воды. Кроме того, в атмосфере красной планеты был найден метан – известный продукт жизнедеятельности живых организмов. Таким образом даже на Марсе есть вероятность существования живых организмов, хоть и простейших, в определенных теплых местах с менее агрессивными условиями, вроде полярных шапок.

Европа

Небезызвестный спутник Юпитера – – довольно холодное (-160 °C — -220 °C) небесное тело, покрытое толстым слоем льда. Однако, ряд результатов исследований (движение коры Европы, наличие индуцированных токов в ядре) все больше приводят ученых к мысли о существовании жидкого водного океана под поверхностными льдами. Причем в случае существования, размеры этого океана превышают размеры мирового океана Земли. Разогрев этого жидкого водяного слоя Европы скорее всего происходит посредством гравитационного влияния , которое сжимает и растягивает спутник, вызывая приливы. В результате наблюдения за спутником были также зафиксированы признаки выбросов водяного пара из гейзеров со скоростью примерно 700 м/с на высоту до 200 км. В 2009-м году американским ученым Ричардом Гринбергом было показано, что под поверхностью Европы имеется кислород в объемах, достаточных для существования сложных организмов. Учитывая другие указанные данные о Европе, можно с уверенностью предположить о возможности существования сложных организмов, пусть подобных рыбам, которые обитают ближе ко дну подповерхностного океана, где судя по всему расположены гидротермальные источники.

Энцелад

Наиболее многообещающим местом для обитания живых организмов является спутник Сатурна – . Несколько похожий на Европу, этот спутник все же отличается от всех других космических тел Солнечной системы тем, что на нем обнаружена жидкая вода, углерод, кислород и азот в форме аммиака. Причем результаты зондирования подтверждаются реальными фотографиями огромных фонтанов воды, бьющих из трещин ледяной поверхности Энцелада. Собрав воедино полученные свидетельства, ученые утверждают о наличии подповерхностного океана под южным полюсом Энцелада, температура которого лежит в диапазоне от -45°C до +1°C. Хотя существуют оценки, согласно которым температура океана может достигать даже +90. Даже если температура океана не высока, все же нам известны рыбы, живущие в водах Антарктики при нулевой температуре (Белокровные рыбы).

Помимо этого, данные, полученные аппаратом , и обработанные учеными из института Карнеги, позволили выяснить щелочность среды океана, которая составляет 11-12 pH. Данный показатель является довольно благоприятным для зарождения, а также поддержания жизни.

Есть ли жизнь на других планетах?

Вот мы и подобрались к оценке вероятности существования инопланетной жизни. Все написанное выше несет оптимистичный характер. Исходя из широкого разнообразия земных живых организмов, можно сделать вывод, что даже на самой «суровой» планете-двойнике Земли может возникнуть живой организм, пусть и совсем отличный от привычных для нас. Даже исследуя космические тела Солнечной системы, мы находим закоулки, казалось, мертвого мира, не похожего на Землю, в которых все же существуют благоприятные условия для углеродных форм жизни. Еще сильнее укрепляет наши убеждения о распространенности живого во Вселенной возможность существования не углеродных форм жизни, а неких альтернативных, использующих вместо углерода, воды и других органических веществ некоторые иные вещества, вроде кремния или аммиака. Таким образом допустимые условия для жизни на другой планете значительно расширяются. Умножив это все на размеры Вселенной, конкретнее – на количество планет, получим достаточно высокую вероятность возникновения и поддержания инопланетной жизни.

Есть лишь одна проблема, которая возникает перед астробиологами, равно как и перед всем человечеством – мы не знаем, как возникает жизнь. То есть как и откуда взяться хотя бы простейшим микроорганизмам на других планетах? Вероятность зарождения самой жизни, даже при благоприятных условиях, мы оценить не можем. А потому оценка вероятности существования живых инопланетных организмов крайне затруднительна.

Если переход от химических соединений к живым организмам определить, как естественное биологическое явление, вроде самовольного объединения комплекса органических элементов в живой организм, то вероятность возникновения такого организма высока. В таком случае можно сказать, что на Земле так или иначе появилась бы жизнь, имея она в наличии те органические соединения, которые она имела, и соблюдая те физические условия, которые она соблюдала. Однако, ученые так и не выяснили природу этого перехода и факторов, которые могут на него влиять. Потому среди факторов, влияющих на само возникновение жизни, может быть что угодно, вроде температуры солнечного ветра или расстояния до соседней звездной системы.

Предполагая, что для возникновения и существования жизни в пригодных для жизни условиях требуется лишь время, и никаких более неизученных взаимодействий с внешними силами, можно сказать, что вероятность обнаружить живые организмы в нашей галактике – довольно высока, эта вероятность существует даже в нашей Солнечной системе. Если же рассматривать Вселенную в целом, то исходя из всего вышенаписанного, можно с большой уверенностью сказать, что жизнь на других планетах есть.

Да, возможна. Впервые мысль о множественности населенных миров была высказана в средние века Джордано Бруно. Мракобесы сожгли за это ученого на костре в Риме 17 февраля 1600 года на площади Цветов.
Материалистическое понимание Вселенной утверждает зарождение и развитие жизни на других планетах, всюду, где условия благоприятствовали этому.
Условиями существования известных нам форм жизни в первую очередь служат: температура не выше + 100° С и не ниже - 100° С; наличие углерода, входящего основной составной частью в строение живых организмов; наличие кислорода, основного участника жизненных, энергетических реакций живых органов; наличие воды и, наконец, отсутствие в атмосфере планеты ядовитых газов.
Все эти условия могут быть соблюдены лишь в исключительных случаях, если искать их во Вселенной среди бесчисленных звезд и возможных планетных систем. Но именно эта бесчисленность звезд и их возможных планет чрезмерно повышает вероятность существования всех этих условий в тысячах, а быть может и миллионах точек Вселенной.
Особенно интересны нам наши соседи - планеты нашей Солнечной системы, на которых с достаточной точностью могут быть нами установлены условия, существующие на их поверхности.
Из всех планет Солнечной системы из числа носителей жизни сразу должны быть исключены планеты-гиганты: Сатурн, Юпитер, Уран и Нептун. Они скованы вечным льдом и окружены ядовитыми атмосферами. На самом удаленном от солнца Плутоне-вечная ночь и нестерпимая стужа, на самом близком к солнцу Меркурии - нет воздуха. Одна его сторона, обращенная всегда к солнцу, раскалена, другая погружена в вечную тьму и космический холод.
Наиболее благоприятны для зарождения жизни три планеты: Земля, Венера и Марс.
Температурные условия на всех трех планетах не выходят за пределы тех, при которых жизнь возможна. Венера и Марс, как и Земля имеют атмосферу.
Судить о составе атмосферы Венеры трудно, так как планета окутана сплошным покровом облаков. Однако в верхних слоях атмосферы обнаружены ядовитые газы. Атмосфера Венеры, по-видимому, чрезвычайно богата углекислотой, гибельной для животных, но служащей прекрасной средой для развития низших растений.
Существование зарождающейся жизни на Венере не исключено, но пока не может быть доказано. По-иному обстоит вопрос с другим соседом Земли, с Марсом.

Что представляет собой Марс?

Марс - планета почти вдвое меньшей массы, чем Земля. Он удален от Солнца на расстояние в полтора раза большее, чем Земля.
Марс вращается вокруг своей оси за 24 часа 37 минут.
Ось вращения его наклонна к плоскости орбиты примерно так же, как и у Земли. Поэтому на Марсе происходит та же смена времен года, как и у нас.
Установлено, что Марс окружен атмосферой, в которой не обнаружено вредных для развития жизни газов.
Углекислота на Марсе имеется примерно в том же количестве, как и на Земле. Кислорода там предполагают примерно одну сотую той доли, которая имеется в земной атмосфере.
Климат Марса резок и суров и точно охарактеризован в рассказе.
Марс - ровесник Земли и прошел все те же фазы развития, что и Земля.
В период своего остывания и образования первых океанов он был покрыт сплошной облачностью, как сейчас покрыта Венера и как во время каменноугольного периода была покрыта Земля. Во время этого «тепличного» периода развития планеты температура на поверхности Марса не зависела, как и когда-то на Земле, от Солнца. Тогда условия на нем были во всем подобны земным, способствовавшим, как известно, появлению жизни в первородных океанах.
Подобный процесс мог иметь место и на Марсе.
В тепличный период на укутанной облачным покровом планете могли развиваться первые растения, подобные хвощам каменноугольного периода, а также и другие примитивные формы жизни. Лишь в последующие периоды, когда облачный покров рассеялся, Марс, обладая меньшей, чем Земля, силой притяжения, растерял частички стремившейся оторваться от него атмосферы и приобрел уже отличные от земных условия на своей поверхности.
Однако жизненные формы могли приспосабливаться в процессе эволюции к этим новым условиям. Вместе с потерей атмосферы Марс терял и воду, испарявшуюся в атмосферу и в виде паров уносившуюся в мировое пространство.
Постепенно Марс превратился в безводную, покрытую пустынями планету.
Сейчас на его поверхности различают темные пятна, названные когда-то морями. Но если Марс и обладал в давние времена морями, то давно потерял их. Ни один астроном не наблюдал бликов, которые были бы заметны на водной поверхности.
Области Марса близ полюсов поочередно покрываются веществом, по отражательной способности напоминающим земной лед.
По мере действия солнечных лучей, обогревавших ту или другую полярную область, эта белая шапка (более точные исследования Г. А. Тихова показали, что она зеленая), как не покрытый снегом лед, уменьшается в объеме, очерченная темной полосой (видимо, влажной почвы).
По мере похолодания ледяная шапка планеты начинает увеличиваться, причем темной ограничивающей полосы уже не наблюдается. Это позволило сделать вывод, что водяные пары, содержащиеся в атмосфере Марса (в малом количестве), выпадают в виде снежных осадков в полярных областях и покрывают там почву слоем льда толщиной около десяти сантиметров.
По мере потепления лед тает и образовавшаяся вода или впитывается в почву или каким-либо способом распространяется по планете.
Этот процесс происходит поочередно на обоих полюсах Марса. Когда лед тает близ южного полюса, на северном он образуется и наоборот.

Что такое астроботаника?

Это новая советская наука, созданная одним из наших выдающихся астрономов - членом-корреспондентом Академии наук СССР Гавриилом Андриановичем Тиховым.
Тихов первый сделал фотоснимки Марса через цветные светофильтры. Этим путем ему удалось точно установить окраску частей планеты в разное время года.
Особенно интересными оказались пятна, названные когда-то морями. Эти пятна меняли свою окраску с зелено-голубоватым оттенком весной на бурые летом и на коричневые тона зимой. Тихов провел параллель этих изменений с переменой окраски вечнозеленой тайги в Сибири. Зеленая весной, голубоватая в дымке, тайга в летнюю пору буреет, а зимой обретает коричневый оттенок. В то же время окраска обширных пространств Марса оставалась неизменной - красновато-коричневой, во всем подобной окраске земных пустынь.
Предположение о том, что меняющие окраску пятна Марса - зоны сплошной растительности, требовало доказательств.
Попытки обнаружить спектральным методом на Марсе хлорофилл, обеспечивающий фотосинтез и жизнь земных растений, не увенчались успехом.
Земные растения, как сообщено в рассказе, характерны еще тем, что, сфотографированные в инфракрасных лучах, они получаются на снимке белыми, словно покрытые снегом. Если бы зоны предполагаемой на Марсе растительности получились на снимках в инфракрасных лучах такими же белыми, можно было бы не сомневаться в существовании растительности на Марсе.
Однако новые снимки Марса не подтвердили смелых предположений.
Но это не смутило Г. А. Тихова. Он подверг сравнительному исследованию отражательную способность земных растений на Юге и на Севере.
Результаты оказались поразительными. Белыми на фотоснимках в инфракрасных, тепловых, лучах получились только растения, которые отражали, не используя эти лучи. На севере растения (например морошка или мхи) не отражали, а поглощали тепловые лучи, которые были для них отнюдь не излишними. На снимках в инфракрасных лучах северные растения не выходили белыми, как не выходили белыми и зоны предполагаемой растительности Марса.
Это исследование, подкрепленное полярными и высокогорными экспедициями учеников Тихова, позволило ему сделать остроумный вывод, что растения, приспосабливаясь к условиям существования, обретают способность поглощать необходимые лучи и отражать ненужные. На Юге, где солнца много, растения не нуждаются в тепловых лучах спектра и> отражают их; на Севере, бедном солнечным теплом, растения не могут позволить себе такой роскоши и стремятся поглотить все лучи солнечного спектра. На Марсе, где климат особенно суров и солнце скупо, растения естественно стремятся поглотить как можно больше лучей, и понятны неудачи сравнения в этом отношении марсианских растений с южными растениями Земли. Они скорее похожи на растения Арктики.
Придя к такому выводу, Тихов нашел также и разгадку неудач, связанных с попытками обнаружить на Марсе хлорофилл.
Дальнейшее изучение этого вопроса все больше убеждало Тихова в полной аналогии развития марсианских растений с земными. Он обнаружил на Марсе зоны растительности в обширных пустынях, по отражательной способности подобные тем растениям, которые растут у нас в среднеазиатских пустынях.
Интересны сообщения Тихова о массовом цветении некоторых областей марсианских пустынь ранней весной. По цвету и характеру эти зоны цветения на Марсе очень напоминают огромные пространства пустынь Средней Азии, на короткое время покрывающиеся сплошным ковром красных маков.
В последнее время Тиховым высказаны интересные предположения о растительности Венеры. Поскольку на Венере тепла более чем достаточно, растения этой планеты, если они есть, должны отражать всю тепловую часть солнечного спектра, то есть они должны иметь красную окраску. Открытие советского астронома Барабашева на Пулковской обсерватории, обнаружившего через облачность Венеры желтые и оранжевые лучи, дало возможность Тихову предположить, что эти лучи не что иное, как отражение покрова красной растительности Венеры.
Не все ученые пока разделяют точку зрения Г. А. Тихова. Задача Сектора астроботаники Академии наук Казахской ССР найти еще новые неоспоримые доказательства существования растительной жизни на других планетах и прежде всего на Марсе.

Есть ли каналы на Марсе?

Впервые эти странные образования были обнаружены Скиапарелли во время великого противостояния в 1877 году. Они представились ему правильными прямыми линиями, сетью покрывающими планету. Он назвал их «каналами», первым высказав осторожную мысль, что это искусственные сооружения разумных обитателей планеты.
Последующие исследования поставили под сомнение существование каналов. Новые наблюдатели не видели их.
Выдающийся астроном Лоуэлл посвятил свою жизнь проблеме существования жизни на Марсе. Создав специальную обсерваторию в пустыне Аризона, где прозрачность воздуха благоприятствовала наблюдениям, он подтвердил открытие Скиапарелли и развил его осторожную мысль. Лоуэлл открыл и изучил огромное число каналов. Он разделил их на главные артерии (наиболее заметные, двойные, как он утверждал, каналы), которые шли от полюсов через экватор в другое полушарие, и на подсобные каналы, идущие от главных и пересекающих зоны в различных направлениях по дугам большим кругом, то есть по наикратчайшему пути по поверхности планеты (Марс - планета с ровным рельефом. На ней нет гор и заметных изменений рельефа).
Лоуэлл обнаружил две сети каналов; одну, связанную с южной полярной областью тающих льдов, и другую - с такой же северной областью. Эти сети были видны попеременно. Когда таяли северные льды, можно было заметить каналы, идущие от северных льдов; когда таяли южные льды, в поле зрения появились каналы, идущие от южных льдов.
Все это дало возможность Лоуэллу объявить каналы грандиозной ирригационной сетью марсиан, которые построили гигантскую систему использования воды, образующейся при таянии полярных шапок. Лоуэлл вычислил, что мощность водонапорной системы Марса должна в 4000 раз превосходить мощность Ниагарского водопада.
Подтверждение своей мысли Лоуэлл видел в том, что каналы появляются постепенно, с момента начала таяния льдов. Они удлиняются как бы по мере продвижения по ним воды. Установлено, что расстояние в 4250 километров по поверхности Марса удлиняющийся канал (или вода в нем) проходит за 52 дня, что составляет 3,4 километра в час.
Лоуэлл установил также, что в точках пересечения каналов существуют пятна, названные им оазисами. Эти оазисы он готов был считать крупными центрами обитателей Марса, их городами, Однако идея Лоуэлла не нашла всеобщего признания. Само существование каналов было поставлено под сомнение. При рассмотрении Марса в более сильные телескопы «каналы» как сплошные прямолинейные образования не обнаруживались. Замечались, лишь отдельные скопления точек, которые глаз мысленно стремился соединить в прямые линии.
«Каналы» стали приписывать оптическому обману, которому поддавались лишь некоторые исследователи.
Однако на помощь пришел объективный метод исследования.
Г. А. Тихов, работая в Пулковской обсерватории, впервые в мире сфотографировал каналы Марса. Фотопластинка - не глаз, она, казалось бы, не может впадать в ошибку.
За последние годы фотографирование каналов проводится все в более широких размерах.
Так, в противостояние 1924 года Тремилером было получено на фотографии- свыше тысячи марсианских каналов. Дальнейшие фотоснимки подтвердили их существование.
Крайне интересным оказалось исследование окраски таинственных каналов. Их окраска во всем подобна меняющейся окраске зон сплошной растительности Марса.
Вычисление ширины каналов (от ста до шестисот километров) привело к мысли, что каналы не есть «каналы - открытые выемки в почве, наполненные водой», скорее они представляют собой полосы растительности, появляющейся по мере течения воды тающих льдов по грандиозным водопроводным трубам (со скоростью 3,4 километра в час. С этой скоростью по прошествии некоторого времени и идет волна всходов). Эти полосы растительности (леса и поля) меняют свою окраску по мере изменения времени года.
Предположение о существовании зарытых в почву водопроводных труб с выводами в виде колодцев могло бы примирить наблюдателей, видевших каналы, и наблюдателей, видевших не прямые линии, а лишь отдельные точки, расположенные по прямым линиям. Эти точки напоминают оазисы искусственно орошаемой растительности в местах вывода водопроводных труб на поверхность.
Предположение о существовании зарытых труб тем естественнее, что в условиях малого атмосферного давления Марса всякий открытый водоем способствовал бы быстрой потере воды за счет интенсивного испарения.
Спор о существе каналов еще продолжается, но он уже не ставит под сомнение их существование.
Отклоняясь от слишком смелого предположения о сооружениях разумных обитателей Марса, некоторые ученые скорее готовы признать «каналы» трещинами вулканического происхождения, которые, кстати говоря, не обнаружены ни на одной из других планет Солнечной системы. Эта гипотеза страдает еще и тем, что не может объяснить движения воды вдоль каналов без существования мощной водонапорной системы, подающей полярные воды через экватор в противоположное полушарие.
Другая точка зрения астрономов склонна считать цветные, меняющиеся по длине и цвету геометрически правильные полосы на Марсе следами жизнедеятельности живых существ, достигших высшего уровня умственного развития, не уступающего людям Земли.

Каковы обстоятельства Тунгусской катастрофы 1908 года?

На основании показаний более тысячи очевидцев - корреспондентов Иркутской сейсмологической станции и Иркутской обсерватории установлено:
Ранним утром 30 июня 1908 года по небосводу пролетело огненное тело (характер болида), оставляя за собой след, как падающий метеорит.
В семь часов утра по местному времени над тайгой близ фактории Вановары возник ослепительный шар, который казался ярче солнца. Он превратился в огненный столб, упершийся в безоблачное небо.
Прежде ничего подобного при падении метеоритов не наблюдалось. Не было такой картины и при падении несколько лет назад гигантского, рассыпавшегося в воздухе метеорита на Дальнем Востоке.
После световых явлений был слышен удар, многократно повторившийся, как повторяется удар грома, превращаясь в раскаты. Звук был слышен на расстоянии до тысячи километров от места катастрофы. Вслед за звуком пронесся ураган страшной силы, срывавший с домов крыши и валивший заборы на расстоянии сотен километров.
В домах ощущались явления, характерные для землетрясений. Колебания земной коры были отмечены многими сейсмологическими станциями: в Иркутске, Ташкенте, Йене (Германия). В Иркутске (ближе к месту катастрофы) зафиксировано два толчка. Второй был слабее и, по утверждению директора станции, был вызван дошедшей до Иркутска с опозданием воздушной волной.
Воздушная волна была зафиксирована также и в Лондоне и дважды обошла земной шар.
В течение трех дней после катастрофы на территории Европы и Севере Африки в небе на высоте 86 километров наблюдались светящиеся облака, позволявшие ночью фотографировать и читать газеты. Академик А. А. Полканов, находившийся тогда в Сибири, ученый, умевший наблюдать и точно фиксировать виденное, записал в дневнике: «Небо покрыто плотным слоем туч, льет дождь и в то же самое время необычайно светло. Настолько светло, что на открытом месте можно довольно свободно прочесть мелкий шрифт газеты. Луна не должна быть, а тучи освещены каким-то желто-зеленым, иногда переходящим в розовый, светом». Если бы этот загадочный ночной свет, замеченный академиком Полкановым, был отраженным солнечным светом, он был бы белым, а не желто-зеленым и розовым.
Спустя двадцать лет советская экспедиция Кулика побывала на месте катастрофы. Результаты многолетних поисков экспедиции точно переданы астрономом в рассказе.
Предположение о падении в тунгусскую тайгу грандиозного метеорита хотя и более привычно, но не объясняет:

а) Отсутствие каких-либо осколков метеорита.
б) Отсутствие кратера и воронок.
в) Существование в центре катастрофы стоячего леса.
д) Наличие после падения метеорита грунтовых вод под давлением.
е) Фонтан воды, бивший в первые дни катастрофы.
ж) Появление ослепительного, как солнце, шара в момент катастрофы.
з) Несчастные случаи с эвенками, побывавшими в месте катастрофы в первые дни.

Внешняя картина произошедшего в тунгусской тайге взрыва полностью совпадает с картиной атомного взрыва.
Предположение такого взрыва в воздухе над тайгой объясняет все обстоятельства катастрофы следующим образом.
Лес в центре стоит на корню, поскольку воздушная волна обрушилась на него сверху, обломав ветки и вершины.
Светящиеся облака - действие улетевших вверх остатков радиоактивного вещества на воздух. Несчастные случаи в тайге - действие радиоактивных частичек, упавших в почву. Возгонка, превращение в пар, всего влетевшего в земную атмосферу тела естественна при температуре атомного взрыва (20 миллионов градусов Цельсия) и, конечно, никаких его остатков найти было нельзя.
Фонтан воды, бивший сразу после катастрофы, был вызван образованием в слое мерзлоты трещин от удара взрывной волны.

Возможен ли взрыв радиоактивного метеорита?

Нет, невозможен. В метеоритах встречаются все те вещества, какие встречаются на Земле.
Содержание, скажем, урана в метеоритах составляет около одной двухсотмиллиардной доли процента. Для возможности цепной реакции атомного распада явилось бы необходимым иметь урановый метеорит в исключительно чистом виде, да, кроме того, еще и в виде редчайшего, не встречающегося никогда в чистом виде изотопа Урана-235. Помимо всего, если даже и предположить такой невероятный случай, что в природе оказался такой кусок «рафинированного» Урана-235, то он не мог бы существовать, так как Уран-235 склонен к так называемому «спонтанному» распаду, непроизвольным взрывам некоторых своих атомов. При первом же таком непроизвольном взрыве предполагаемый метеорит взорвался бы сразу же после своего образования.
Если предположить атомный взрыв, то неизбежно будет предположение, что взорвалось радиоактивное вещество, полученное искусственным образом.

Откуда мог прилететь корабль, использующий радиоактивное топливо?

Ближайшая от нас звезда с предполагаемой около нее планетной системой находится в созвездии Лебедя. Это открыто нашим пулковским астрономом Дейчем. От нас до нее расстояние в девять световых лет. Чтобы преодолеть такое расстояние, нужно лететь со скоростью света в течение девяти лет!
Получить такую скорость межпланетному кораблю, конечно, невозможно. Может идти речь лишь о степени приближения к ней. Мы знаем, что элементарные частички материи - электроны движутся со скоростью до 300 тысяч километров в секунду. Если предположить, что в результате длительного разгона и корабль достиг бы такой скорости, мы получим, что рейс с планеты ближайшей к нам звезды в оба конца должен был бы занять несколько десятков лет. Однако здесь на помощь приходит парадокс Эйнштейна. Для людей, летящих со скоростью, близкой к скорости света, время двигалось бы медленнее, много медленнее, чем для тех, кто наблюдал бы за их полетом, пробыв в полете десятки лет, они обнаружили бы, что на Земле успели пройти тысячелетия...
Трудно говорить о продолжительности жизни неизвестных нам существ, но если предполагать такой полет с Земли, то путешественники, отправляясь в полет, должны посвятить ему всю свою жизнь до глубокой старости. Нечего говорить о более далеких звездах и их планетах.
Значительно реальнее было бы предположение о попытке перелета с более близкой планеты и прежде всего с Марса.

Что говорит астронавигация?

Марс движется вокруг Солнца по эллипсу, делая один оборот за 687 земных суток (1,8808 земных года).
Орбиты Земли и Марса сближаются в том месте, которое Земля проходит летом. Каждые два года Земля встречается в этом месте с Марсом, но особенно близко друг к другу они оказываются раз в 15-17 лет. Тогда расстояние между планетами сокращается от 400 миллионов до 55 миллионов километров (великое противостояние).
Однако нельзя рассчитывать, что межпланетному кораблю достаточно преодолеть только это расстояние.
Обе планеты движутся по своим орбитам: Земля со скоростью 30 километров в секунду, Марс - 24 километра в секунду.
Реактивный корабль, покидая планету, наследует ее скорость вдоль орбиты, направленную перпендикулярно к кратчайшему пути между планетами. Чтобы корабль мог лететь прямо, надо было бы уничтожить эту боковую скорость вдоль орбиты, бесполезно тратя на это огромную энергию. Выгоднее лететь по кривой, используя скорость вдоль орбиты и добавляя кораблю лишь ту скорость, которая позволит ему оторваться от планеты.
Для отрыва от Марса потребуется 5,1 километра в секунду, для отрыва от Земли-11,3 километра в секунду.
Видный советский астронавигатор Штернфельд сделал точный подсчет маршрутов и сроков перелета межпланетного корабля, применительно к противостояниям 1907 и 1909 годов. Он получил, что марсианский корабль, исходя из условия наибольшей экономии горючего, вылетев в наиболее выгодное время с Марса, должен был достигнуть Земли или в 1907 или в 1909 году, но никак не в 1908! Однако при полете с Венеры, использовав противостояние Земли и Венеры в 1908 году, астронавты должны были прибыть на Землю 30 июня 1908 года (!).
Совпадение абсолютно точное, позволяющее делать далеко идущие предположения.
Соответственно этому перед великим противостоянием 1909 года марсиане, достигшие в 1908 году Земли, находились бы в наивыгоднейших условиях для возвращения на Марс.

Были ли сигналы с Марса?

О замеченных в 1909 году световых сигналах с Марса говорит статья «Марс и его каналы» сборника «Новые идеи в астрономии», вышедшего вскоре после великого противостояния 1909 года.
Общеизвестны сенсационные когда-то разговоры о приеме радиосигналов с Марса в начале двадцатых годов во время противостояний Земли и Марса.
То было время первого расцвета созданной гениальным Поповым радиотехники, появление первых общедоступных радиоприемников.
Я. Перельман в приложении к своей книге «Межпланетные путешествия» говорит, что в 1920 и 1922 годах во время сближения Марса с Землей земные радиоприемники принимали сигналы, которые по своему характеру не могли быть посланы земными станциями (очевидно, в виду имелась прежде всего длина волны, весьма ограниченная для передающих станций Земли того времени). Эти сигналы приписывались Марсу.
Падкий на сенсации Маркони, а также его инженеры выезжали в специальные экспедиции в Анды и Атлантический океан для улавливания марсианских сигналов. Маркони пытался поймать эти сигналы на волне 300 ООО метров.

Взрыв на Марсе

После великого противостояния Земли и Марса в 1956 году директор Пулковской обсерватории член-корреспондент Академии наук СССР А. А. Михайлов во время своей встречи с учеными в Ленинградском доме ученых в Лесном сообщил, что Пулковская обсерватория зафиксировала на Марсе взрыв огромной силы... Судя по тому, что последствия этого взрыва удалось наблюдать в телескопы, и зная, что на Марсе нет никаких вулканов, наблюденный взрыв скорее всего следует отнести к ядерному взрыву. Представить себе ядерный взрыв на Марсе, не вызванный искусственно, трудно. Очень может быть, что взрыв этот был намеренно вызван в каких-либо созидательных целях. Таким образом, наблюдение Пулковской обсерватории может служить одним из доказательств в пользу существования на Марсе разумной жизни.

Какова история гипотезы?

Впервые гипотеза об атомном взрыве межпланетного корабля в тунгусской тайге в 1908 году была опубликована в рассказе «Взрыв» А. Казанцева. («Вокруг света», № 1, 1946 г.)
20 февраля 1948 года автор доложил эту гипотезу на заседании Всесоюзного астрономического общества в Московском планетарии.
Московский планетарий популяризировал эту гипотезу в инсценировке «Загадка Тунгусского метеорита».
В свое время в защиту права выдвинуть гипотезу о взрыве межпланетной ракеты над тунгусской тайгой выступили крупнейшие астрономы, опубликовавшие письмо в № 9 журнала «Техника - молодежи» за 1948 год. В числе ученых, подписавших его, были: член-корреспондент Академии наук СССР, директор Пулковской обсерватории профессор А. А. Михайлов, председатель Московского отделения Всесоюзного астрономического общества профессор П. П. Паренаго, член-корреспондент Академии педагогических наук профессор Б. А. Воронцов-Вельяминов, профессор К- Л. Баев, профессор М. Е. Набоков и др.
Впоследствии профессор А. А. Михайлов предложил свою версию тунгусской катастрофы, считая, что Тунгусский метеорит был кометой, но широкого резонанса это предположение не имело.
Один из помощников Кулика В. А. Сытин считал, что тунгусская катастрофа была вызвана не падением метеорита, а грандиозным ветровалом. Но это предположение не объясняет картины катастрофы и многих ее подробностей.
Специалисты по метеоритам: академик Фесенков, ученый секретарь Комитета по метеоритам Академии наук СССР Кринов, профессор Станюкович, Астапович и другие последовательно придерживались точки зрения, что в тунгусскую тайгу упал метеорит весом около миллиона тонн, и решительно отвергали другие точки зрения.

Исследования аэродинамика

Проблема Тунгусского метеорита заинтересовала многих. Строго научно подошел к ней известный аэродинамик и авиаконструктор из группы Антонова, автор хороших советских планеров А. Ю. Моноцков. Обработав показания огромного числа очевидцев, корреспондентов Иркутской обсерватории, он попробовал определить скорость, с какой летел предполагаемый «метеорит» над различными районами. Он составил карту, нанеся траекторию полета и время, в какое «метеорит» был замечен очевидцами в различных точках траектории. Составленная Моноцковым карта приводила к неожиданным выводам: «метеорит» пролетал над землей тормозя... Моноидов вычислил скорость, с какой «метеорит» оказался над местом взрыва в тунгусской тайге, и получил 0,7 километра в секунду (а не 30-60 километров в секунду, как до сих пор считалось!). Скорость эта приближается к скорости полета современного реактивного самолета и является немаловажным аргументом в пользу того, что «тунгусский метеорит», как считает Моноцков, был «летательным аппаратом» - межпланетным кораблем. Если бы метеорит упал с такой ничтожной скоростью, то, исходя из выводов аэродинамика, получается, что, для того чтобы произвести разрушения в тайге, соответствующие взрыву миллиона тонн взрывчатого вещества, он должен был обладать массой не в миллион тонн, как до сих пор вычисляли астрономы, а в миллиард тонн, обладая километром в поперечнике. Это не соответствует наблюдениям - пролетавший метеорит не затмевал небосвода. Очевидно, энергия разрушения в тайге не была тепловой энергией, в которую перешла кинетическая энергия метеорита при ударе о землю, а скорее всего была ядерной энергией, освободившейся при атомном взрыве топлива межпланетного корабля, без удара его о землю.

Научный или ненаучный спор

Защитники гипотезы о падении метеорита неоднократно выступали против гипотезы о взрыве в тунгусской тайге межпланетного корабля с другой планеты. Выступали они в предельно раздраженном тоне и приводили следующие аргументы.

1. Отрицать падение метеорита нельзя, ибо это ненаучно (почему?).
2. Метеорит упал, но только утонул в болоте.
3. Кратер образовался, но его затянуло болотистой почвой.

Именно с такими аргументами выступили академик Фесенков и Кринов в статье «Метеорит или марсианский корабль?», опубликованной в «Литературной газете» в августе 1951 года. Эффект от опубликования статьи был прямо противоположен желанию ее авторов. Гипотеза о марсианском корабле стала сразу известной миллионам читателей. Газета стала получать множество писем. В некоторых из них совершенно справедливо указывалось:

а) если метеорит упал и утонул в болоте, то где он? Почему не обнаружен он в глубине магнитными приборами? Почему не рассыпались его осколки, что всегда бывает при падении?
б) если кратер образовался - размером он должен быть не менее Аризонского, 1,5 километра в диаметре, до 180 метров глубиной,- и кратер этот, как утверждают ученые-метеоритчики, затянуло болотистой почвой, то почему в центре катастрофы нет никаких следов кратерного образования, более того, почему там остались в целости слой торфа и слой вечной мерзлоты, последний ведь должен был бы расплавиться? В силу каких причин «болотистая почва, затянувшая кратер», могла снова замерзнуть, словно на землю вновь вернулся ледниковый период?

Как известно, ответы на эти вопросы метеоритчики не дали, да и дать не могли.

Сенсационная разгадка тайны Тунгусского метеорита

Шли годы, никто не побывал вновь на месте падения предполагаемого метеорита в тунгусской тайге, но интерес к этому явлению, быть может из-за связанных с ним космических гипотез, не ослабевал. И в 1957 году специалисты по метеоритам вынуждены были снова выступить в печати по этому вопросу. Кринов в «Комсомольской правде», профессор Станюкович в журнале «В защиту мира» сенсационно объявили, что загадка Тунгусского метеорита наконец разгадана! Метеорит был, но... только он распылился в воздухе. Наконец-то ученые-метеоритчики отказались от утверждения, что небесное тело ударилось о Землю, а кратер «потерялся»! Но нет! Даже эта логика чужда.
Метеоритчики заинтересованы только фактом распыления части метеорита. В доказательство того, что метеорит распылился в воздухе, было сообщено, что в подвалах Академии наук были найдены (!) старые банки с почвой, в свое время привезенной с места тунгусской катастрофы. Анализ этих забытых банок обнаружил в почве частицы металлической пыли размером в доли миллиметра. Химический анализ установил там наличие железа, 7 процентов никеля и около 0,7 процента кобальта, а также магнетитовые шарики размером в сотые доли миллиметра, продукт оплавления металла в воздухе.
Можно порадоваться, что Комитет по метеоритам Академии наук СССР спустя четверть века сделал в подвалах Академии открытие и произвел химический анализ старых проб таежной почвы, но одновременно надо признать, что поспешное объявление о разгадке тайн тунгусской катастрофы несколько преждевременно.
В самом деле, если метеоритчики вынуждены будут согласиться с тем, что метеорит никогда не падал на землю и по какой-то причине превратился в пыль, то уместно задать вопрос:, почему он превратился в пыль? Чем вызван взрыв в тайге, если удара небесного тела о землю не было и энергия движения метеорита не перешла в тепловую? И откуда же в случае распыления метеорита взялась колоссальная энергия, повалившая в тайге деревья на сотнях квадратных километров? На все эти естественные вопросы ответа у метеоритчиков, упрямо цеплявшихся за метеоритную версию тунгусской катастрофы, нет, да и быть не может.
Кстати, нахождение в образцах почвы из тунгусской тайги металлической пыли вовсе не доказывает, что это непременно остатки метеорита. Ведь характерная для метеоритов структура железа не обнаружена. Скорее всего мы имеет дело с остатками корпуса (межпланетной ракеты, уничтоженной взрывом. Химический состав этих остатков самый подходящий.
Как видим, отмахнуться от объяснения тунгусской катастрофы атомным взрывом очень трудно. Ссылки на почетные ученые звания с одновременным пренебрежением общеизвестного факта - чудовищного по силе взрыва в тунгусской тайге - никак не убеждают пытливого человека. И этот пытливый человек, конечно, хочет, чтобы ученые действительно объяснили загадку Тунгусского метеорита.

Как можно решить загадку Тунгусского метеорита

Посылка научной экспедиции в тунгусскую тайгу представит несомненный интерес. Приходится удивляться, почему Академия наук, ее Комитет по метеоритам не рисковал до сих пор послать такую экспедицию, которая могла бы внести вклад если не в метеоритную науку, то в наше материалистическое мировоззрение. Очень хорошо, что экспедиция все-таки состоится. Пожелаем ей удачи!
Решить вопрос, произошел ли в тунгусской тайге атомный взрыв, можно. Для этого понадобится исследовать местность, где произошла катастрофа, исследовать ее на радиоактивность. Для обычных местностей Земли существует определенная норма радиоактивности. При помощи специальных приборов, счетчиков Гейгера, в любом месте можно обнаружить совершенно определенное количество распадов атомов.
Если в районе катастрофы в момент взрыва действительно произошло мощное радиоактивное излучение (атомный взрыв), то поток нейтронов (элементарных частиц, выброшенных при распаде атомов), пройдя через древесину поваленных деревьев и почву, неизбежно вызвал бы некоторые изменения. Должны были появиться так называемые «меченые атомы» с более тяжелыми ядрами, в которых застряли некоторые из пролетевших нейтронов. Эти меченые атомы представляют собой более тяжелые изотопы (разновидности) обычно встречающихся на Земле элементов. Так, например, обычный азот мог превратиться в тяжелый углерод, медленно распадающийся сам собой. Так же распадаются и другие тяжелые изотопы. Это самопроизвольное разрушение можно обнаружить при помощи тех же счетчиков распада атомов.
Если удается установить, что в районе тунгусской тайги повышенное количество распадов атомов в секунду превышает норму, характер тунгусской катастрофы будет ясен. Более того, можно установить также и центр катастрофы и в случае совпадения его с мертвым лесом окончательно восстановить всю картину гибели марсианского корабля.

А.П.Казанцев, Гость из космоса, ГИГЛ, Москва, 1958, 238с.

NASA прогнозирует, что мы найдем жизнь за пределами нашей планеты, а может, и за пределами нашей Солнечной системы, уже в этом столетии. Но где? Какой будет эта жизнь? Будет ли мудро вступать в контакт с инопланетянами? Поиск жизни будет трудным, но поиск ответов на эти вопросы в теории может быть еще дольше. Перед вами десять пунктов, так или иначе связанных с поисками внеземной жизни.

NASA полагает, что внеземная жизнь будет обнаружена в течение 20 лет

Мэтт Маунтин, директор Научного института космического телескопа в Балтиморе, говорит следующее:

«Представьте себе момент, когда мир просыпается и человеческая раса понимает, что больше не одинока в пространстве и времени. В наших силах совершить открытие, которое изменит мир навсегда».

Используя наземные и космические технологии, ученые NASA прогнозируют, что мы найдем внеземную жизнь в галактике Млечный Путь в течение ближайших 20 лет. Запущенный в 2009 году космический телескоп Кеплер помог ученым найти тысячи экзопланет (планет за пределами Солнечной системы). Кеплер обнаруживает планету, когда она проходит перед своей звездой, вызывая небольшое падение яркости звезды.

Исходя из данных Кеплера, ученые NASA считают, что только в нашей галактике 100 миллионов планет могут быть домом для внеземной жизни. Но только с началом работы космического телескопа Джеймса Вебба (запуск запланирован на 2018 год), мы получим первую возможность косвенно обнаруживать жизнь на других планетах. Телескоп Вебба будет искать газы в атмосферах планет, генерируемые жизнью. Конечная цель - найти Землю 2.0, близнеца нашей собственной планеты.

Внеземная жизнь может не быть разумной

Телескоп Вебба и его преемники будут искать биосигнатуры в атмосферах экзопланет, а именно: молекулярную воду, кислород и углекислый газ. Но даже если биосигнатуры будут обнаружены, они не сообщат нам, разумна ли жизнь на экзопланете. Инопланетная жизнь может быть представлена одноклеточными организмами вроде амеб, а не сложными существами, которые могут общаться с нами.

Мы также ограничены в наших поисках жизни своими предрассудками и недостатком воображения. Мы предполагаем, что должна существовать жизнь на углеродной основе вроде нас, а ее разум должен быть похож на наш. Объясняя этот сбой в творческом мышлении, Кэролин Порко из Института космических наук говорит следующее: «Ученые не начинают думать о совершенно безумных и невероятных вещах, пока некоторые обстоятельства не заставят их».

Другие ученые вроде Питера Уорда считают, что разумная инопланетная жизнь будет недолговечна. Уорд допускает, что другие виды могут претерпеть глобальное потепление, перенаселение, голод и конечный хаос, который уничтожит цивилизацию. Нас ждет то же самое, считает он.

В настоящее время на Марсе слишком холодно, чтобы могла существовать жидкая вода и поддерживаться жизнь. Но марсоходы NASA - «Оппортьюнити» и «Кьюриосити», анализирующие породы Марса - показали, что четыре миллиарда лет назад на планете была пресная вода и грязь, в которой могла процветать жизнь.

Другой возможный источник воды и жизни - третий по высоте вулкан Марса Arsia Mons. 210 миллионов лет назад этот вулкан извергался под огромным ледником. Тепло вулкана заставляло лед таять, образуя озера в леднике, словно жидкие пузырьки в частично замерзших кубиках льда. Эти озера, возможно, существовали достаточно долго для того, чтобы в них сформировалась микробная жизнь.

Вполне возможно, что некоторые простейшие организмы Земли смогут выжить на Марсе сегодня. Метаногены, например, используют водород и диоксид углерода для производства метана, им не нужен кислород, органические питательные вещества или свет. Они способы переживать перепады температур вроде марсианских. Поэтому когда в 2004 году ученые обнаружили метан в атмосфере Марса, они допустили, что метаногены уже обитают под поверхностью планеты.

Когда мы отправимся на Марс, мы можем загрязнить окружающую среду планеты микроорганизмами с Земли. Это беспокоит ученых, поскольку может усложнить задачу поиска форм жизни на Марсе.

NASA планирует запустить миссию в 2020-х годах на Европу, один из спутников Юпитера. Среди основных задач миссии - определить, обитаема ли поверхность луны, а также определить места, в которых смогут приземлиться космические корабли будущего.

В дополнение к этому, NASA планирует искать жизнь (возможно, разумную) под толстым слоем льда Европы. В интервью The Guardian ведущий ученый NASA доктор Эллен Стофан сказала следующее: «Мы знаем, что под этой ледяной коркой есть океан. Водяная пена выходит из трещин в южной полярной области. Есть оранжевые разводы по всей поверхности. Что это, в конце концов?».

Космический аппарат, который отправится на Европу, сделает несколько облетов вокруг луны или останется на ее орбите, возможно, изучит перья пены в южном регионе. Это позволит ученым собрать образцы внутренних слоев Европы без рискованной и дорогой посадки космического аппарата. Но любая миссия должна предусмотреть защиту корабля и его инструментов от радиоактивной окружающей среды. Также NASA хочет, чтобы мы не загрязняли Европу земными организмами.

До сих пор ученые были технологически ограничены в поисках жизни за пределами нашей Солнечной системы. Они могли искать только экзопланеты. Но вот физики из Университета Техаса считают, что нашли способ обнаружения экзолун (лун на орбите экзопланет) через радиоволны. Этот метод поиска может значительно увеличить количество потенциально обитаемых тел, на которых мы можем найти внеземную жизнь.

Используя знания о радиоволнах, излучаемых в ходе взаимодействия между магнитным полем Юпитера и его луной Ио, эти ученые смогли экстраполировать формулы для поиска подобных излучений экзолунами. Они также полагают, что альфвеновские волны (рябь плазмы, вызванная взаимодействием магнитного поля планеты и ее луной) могут также помочь обнаружить экзолуны.

В нашей Солнечной системе луны типа Европы и Энцелада обладают потенциалом для поддержания жизни в зависимости от их удаленности от Солнца, атмосферы и возможного существования воды. Но по мере того, как наши телескопы становятся все мощнее и дальновиднее, ученые надеются изучать подобные луны в других системах.

В настоящее время есть две экзопланеты с подходящими на роль обитаемых экзолунами: Gliese 876b (примерно 15 световых лет от Земли) и Эпсилон Эридана b (примерно 11 световых лет от Земли). Обе планеты - газовые гиганты, как и большинство обнаруженных нами экзопланет, но находятся в потенциально обитаемых зонах. Любые экзолуны у таких планет тоже могут иметь потенциал для поддержания жизни.

До сих пор ученые искали внеземную жизнь, глядя на экзопланеты, богатые кислородом, углекислым газом или метаном. Но поскольку телескоп Вебба сможет обнаружить разрушающие озон хлорфторуглероды, ученые предлагают искать разумную внеземную жизнь по таким «промышленным» загрязнениям.

В то время как мы надеемся обнаружить внеземную цивилизацию, которая все еще жива, вполне вероятно, что мы найдем вымершую культуру, которая уничтожила сама себя. Ученые считают, что лучший способ узнать, могла ли на планете быть цивилизация, - это найти долгоживущие загрязнители (которые пребывают в атмосфере десятки тысяч лет) и краткоживущие загрязнители (которые исчезают лет за десять). Если телескоп Вебба обнаружит только долгоживущие загрязняющие вещества, высок шанс того, что цивилизация исчезла.

У этого метода есть свои ограничения. Телескоп Вебба пока может обнаружить только загрязнители на экзопланетах, вращающихся вокруг белых карликов (остатков мертвой звезды размером с наше Солнце). Но мертвые звезды означают мертвые цивилизации, поэтому поиск активно загрязняющей окружающую среду жизни, возможно, будет отложен, пока наши технологии не станут более продвинутыми.

Чтобы определить, какие планеты могут поддерживать разумную жизнь, ученые, как правило, строят свои компьютерные модели на основе атмосферы планеты в потенциально обитаемой зоне. Последние исследования показали, что эти модели также могут включать влияние крупных жидких океанов.

Для примера возьмем нашу собственную Солнечную систему. Земля обладает стабильной средой, которая поддерживает жизнь, но Марс - который находится на внешней границе потенциально обитаемой зоны - замерзшая планета. Температура на поверхности Марса может колебаться в пределах 100 градусов по Цельсию. Есть и Венера, которая находится в пределах обитаемой зоны и нестерпимо горяча. Ни одна из планет не является хорошим кандидатом на поддержку разумной жизни, хотя обе они могут быть населены микроорганизмами, способными выживать в чрезвычайных условиях.

В отличие от Земли, ни Марс, ни Венера не обладают жидким океаном. По словам Дэвида Стивенса из Университета Восточной Англии, «океаны обладают огромным потенциалом для управления климатом. Они полезны, поскольку позволяют температуре поверхности крайне медленно реагировать на сезонные изменения солнечного отопления. И они помогают обеспечивать изменения температуры по всей планете в допустимых пределах».

Стивенс абсолютно уверен, что нам нужно включать возможные океаны в модели планет с потенциальной жизнью, тем самым расширив диапазон поиска.

Экзопланеты с колеблющимися осями могут поддерживать жизнь там, где планеты с фиксированной осью вроде Земли не могут. Это потому, что такие «миры-волчки» имеют другие отношения с планетами вокруг них.

Земля и ее планетарные соседи обращаются вокруг Солнца в той же плоскости. Но миры-волчки и их соседние планеты вращаются под углами, оказывая влияние на орбиты друг друга так, что первые иногда могут вращаться полюсом, обращенным к звезде.

Такие миры чаще, чем планеты с фиксированной осью, будут обладать жидкой водой на поверхности. Это потому, что тепло от материнской звезды будет равномерно распределяться на поверхности нестабильного мира, особенно если он будет обращен к звезде полюсом. Ледяные шапки планеты будут таять быстро, образуя мировой океан, а где океан - там потенциальная жизнь.

Чаще всего астрономы ищут жизнь на экзопланетах, которые находятся в пределах обитаемой зоны своей звезды. Но некоторые «эксцентричные» экзопланеты остаются в обитаемой зоне только часть времени. Будучи вне зоны, они могут сильно плавиться или замерзать.

Даже при таких условиях эти планеты могут поддерживать жизнь. Ученые указывают на то, что некоторые микроскопические формы жизни на Земле могут выживать в экстремальных условиях - как на Земле, так и в космосе - бактерии, лишайники и споры. Это говорит о том, что обитаемая зона звезды может простираться гораздо дальше, чем считается. Только нам придется смириться с тем, что внеземная жизнь может не только процветать, как здесь, на Земле, но и терпеть суровые условия, где, казалось, никакая жизнь быть не может.

NASA предпринимает агрессивный подход к поиску внеземной жизни в нашей Вселенной. Проект поиска внеземного разума SETI тоже становится все более амбициозным в своих попытках контактировать с внеземными цивилизациями. SETI хочет выйти за рамки простого поиска и отслеживания внеземных сигналов и начать активно отправлять сообщения в космос, чтобы определить наше положение относительно остальных.

Но контакт с разумной инопланетной жизнью может представлять опасность, с которой мы можем не справиться. Стивен Хокинг предупреждал, что доминирующая цивилизация, скорее всего, использует свою мощь, чтобы покорить нас. Есть также мнение, что NASA и SETI преступают этические границы. Нейропсихолог Габриэль де ла Торре задается вопросом:

«Может ли такое решение быть принято всей планетой? Что случится, если кто-то получит наш сигнал? Готовы ли мы к такой форме связи?».

Де ла Торре считает, что широкой общественности в настоящее время не хватает знаний и подготовки, необходимых для взаимодействия с разумными инопланетянами. Точка зрения большинства людей также серьезно подвержена религиозному влиянию.

Поиск внеземной жизни не так прост, как кажется

Технологии, которые мы используем для поиска внеземной жизни, значительно улучшились, но поиск еще далеко не так прост, как хотелось бы. К примеру, биосигнатуры обычно считаются свидетельством жизни, прошлой или насущной. Но ученые обнаружили безжизненные планеты с безжизненными лунами, которые обладают такими же биосигнатурами, в которых мы обычно видим признаки жизни. Это означает, что наши текущие методы обнаружения жизни зачастую дают сбой.

Кроме того, существование жизни на других планетах может быть гораздо более невероятным, чем мы думали. Красные звезды-карлики, которые меньше и холоднее нашего Солнца, являются наиболее распространенными звездами в нашей Вселенной.

Но, по последней информации, экзопланеты в обитаемых зонах красных карликов могут обладать разрушенной суровыми погодными условиями атмосферой. Эти и многие другие проблемы существенно усложняют поиск внеземной жизни. А ведь так хочется узнать, одиноки ли мы во Вселенной.

Значительной части человечества очень хочется надеяться, что мы не единственные разумные существа во Вселенной и в какой-нибудь далёкой галактике живут наши братья по разуму. Таких энтузиастов не останавливают ни предостережения скептиков, предупреждающих, что внеземной разум может оказаться не совсем миролюбивым, ни заявления учёных, что в обозримой Вселенной не наблюдается условий для возникновения хоть какой-то жизни. Активисты продолжают строить теории жизни на других планетах , которые оказывают в итоге разной степени правдоподобия и способны в хорошем смысле удивить даже специалистов.

Где стоит искать жизнь

Вопрос о возможности существования жизни на других планетах прорабатывается уже давно и тщательно, причём не только откровенными фантазёрами, но и серьёзными исследователями. В связи с этим встал вопрос о формулировании тех критериев, которыми определяется возможность возникновения и развития жизни. По этому поводу развернулась оживлённая и долговременная дискуссия вокруг гипотезы уникальной Земли. Она была создана в ходе обсуждения возможности появления жизни на других планетах Вселенной. Сторонники мнения об уникальности земной жизни предположили, что жизнь могла возникнуть и развиться до сложных форм лишь в среде, ставшей следствием уникального стечения обстоятельств.

Должны были совпасть такие факторы, как масса и гравитационное притяжение планеты, её близость к ближайшей звезде (то есть температурный и радиационный режим), наличие атмосферы и её химический состав и многое-многое другое. Поэтому якобы и вероятность, что все эти условия совпадут ещё раз, ничтожно малы, так что Земля и возникшая на ней жизнь единственны и неповторимы. Но данная гипотеза в настоящее время активно критикуется учёными, полагающими, что жизнь может появиться и создать высокоорганизованные структуры не только на планетах земного типа и с «земными» условиями. Просто это будет жизнь в несколько иных формах и с другими базовыми механизмами функционирования – но это будет жизнь, которая также способна эволюционировать в некие разумные виды. К тому же Вселенная поистине огромна, в ней невероятное количество галактик и было бы огромной самонадеянностью и невежеством полагать, что нигде и никогда не может повториться та же ситуация, что привела к возникновению жизни на Земле.

Самые популярные кандидаты не оправдали надежд

Практически с самого начала интереса человека к космосу и небесным телам наибольшее внимание было уделено наиболее близким по своим характеристикам к Земле планетам Солнечной системы – Марсу и Венере. Не случайно благодаря произведениям научной фантастики слово «марсианин» стало во многом синонимом понятий «инопланетянин», «пришелец». Так вот, Марс в настоящее время не может быть местом обитания сложных форм жизни, сходных с земными, хотя по основным характеристикам он близок с нашей планетой. Однако здесь настолько слабая атмосфера, что её практически нет, следовательно, нет условий для дыхания. Кроме этого, из-за низкого атмосферного давления, которое в сотни раз меньше того, что наблюдается на Земле, на Марсе невозможно существование воды в жидком состоянии.

Таким образом, нет питательной среды, в которой бы могли возникнуть хотя бы простейшие, бактериальные формы жизни. Существует неподтверждённая, но и не опровергнутая теория, что бактерии могли жить на Марсе в прошлом, однако на сегодняшнюю ситуацию это не влияет. Такой же итог приходится вынести и по Венере, правда, с несколько иными сопутствующими данными. На Венере слишком жарко (температура поверхности составляет около 500 градусов по Цельсию), большое атмосферное давление (примерно в 100 раз сильнее земного), высокая степень насыщенности атмосферы газами, что подкармливает сильный парниковый эффект . Вместе с тем и к Венере применим вечный принцип «никогда не говори никогда»: сложной жизни на этой планете нет и не было, но вот существование микробов в прошлом (венерианская атмосфера когда-то была насыщена водой) или в настоящем (под поверхностью планеты) исключать нельзя.

Жизнь может оказаться ближе, чем мы думаем

Другим из вероятных кандидатов на наличие жизни в Солнечной системе является спутник Сатурна Титан. На первый взгляд, не самый очевидный кандидат на роль «колыбели жизни»: температура поверхности Титана составляет примерно «минус» 180 градусов по Цельсию, воды в жидком состоянии здесь нет, в атмосфере не содержится кислорода. Но есть оригинальные теории, согласно которым на Титане может быть жизнь в форме бактерий, которые возникли на базе синтеза водорода, который содержится в плотной атмосфере. Под ледяной коркой Титана есть, как установлено, целые моря из жидкого метана и этана, имеющих куда более высокую стойкость к низким температурам, чем вода. Структура жизни могла развиваться по альтернативному сценарию и взять в качестве химических основ для выделения жизненной энергии такие элементы, как водород, метан и ацетилен.

Но в настоящее время самым перспективным с точки зрения условий для возникновения элементарных форм жизни является другой спутник Сатурна, Энцелад. Это также покрытая льдом планета, которая отражает 90% падающего на неё солнечного света и имеет температуру поверхности около «минус» 200 градусов по Цельсию. Однако к 2014 году, благодаря данным исследовательского зонда «Кассини», неоднократно пролетавшего над Энцеладом на высоте около 500 километров, подтвердились очень важные предположения. Под ледяной толщей планеты, во всяком случае, под её южным полюсом, на глубине около 10 километров расположен настоящий океан из самой настоящей жидкой воды, которая по своему составу очень близка к земной воде. Этот океан имеет площадь около 80 тысяч квадратных километров и предположительную глубину в 20-30 километров. Химический состав, а также довольно комфортная температура воды делает подповерхностный океан Энцелада главным претендентом на наличие внеземных микробных форм жизни. Но чтобы это подтвердить, необходимо организовать миссию на эту планету, которая бы могла произвести забор воды из подлёдного океана и доставить её для анализа.

Александр Бабицкий


Да! В других солнечных системах тоже есть планеты, условия которых позволяют жить. С небольшой вставкой «возможно», потому как такие, их называют экзопланеты, открыты недавно и еще недостаточно изучены. Да и условия среды на этих планетах хоть и близки к Земным, но все же отличаются для полноценной, как на Земле жизни. Да и их далекое от нашей Солнечной системы расположение (в световых годах) для человека пока остается труднодоступным и рассматривается лишь в теории.

Итак, сотрудники космического агентства Nasa попытались разобраться в вопросе, который, возможно, встанет перед человечеством в ближайшие тысячи лет – колонизация на планеты других солнечных систем.

Рассмотрим планеты, попадающие под так называемую "обитаемую зону" (circumstellar habitable zone) – условная зона вблизи звезды, условия которой пригодны для жизни на планете. Именно в такой зоне существует хоть какая-то вероятность возникновения жизни на другой планете, но вначале рассмотрим самые близкие к нам планеты из нашей Солнечной системы.

Планеты Солнечной системы пригодные для жизни

Планета – Земля


Это наша родная планета с которой, конечно, не хочется расставаться ни при каких обстоятельствах. Ведь планета Земля самая пригодная для жизни планета из всех известных во Вселенной. Здесь есть в огромном количестве кислород, как ни у одной другой планеты, азот, водород, гелий, углерод и другие важные вещества, благодаря которым существует жизнь в таком виде, который мы знаем.

Планета Марс


Если и придется переселятся при сложных обстоятельствах, то есть самая ближайшая и единственная в нашей Солнечной системе планета более-менее пригодная для жизни – это Марс. У этой планеты есть атмосфера, которая защищает от космических лучей и температура не такая экстремальная для жизни. К сожалению, атмосферное давление слишком разряженное по сравнению с Земным и кислород хоть и есть, но его очень мало, поэтому находится на планете можно будет только в защитных скафандрах или в герметично-закрытых помещениях. Зато на планете должна быть вода! Правда, если и есть, то ее будет очень-очень мало.

Планеты других звезд пригодные для жизни

Планета Gliese 581 d


Эта удивительная планета находится в планетарной системе Gliese 581 созвездия Весы, что в 20 световых лет от нашей Земли. Это очень большая планета, в 2 раза больше Земли. Звезда Gliese, которая является солнцем для планеты несколько тусклая, потому что является красным карликом, но за счет близкого расположения планеты к своему солнцу на ней температура чуть выше 0 °C, на планете царит полумрак, а в небе мерцает огромный красный шар.

Планета HD 85512 b


Эта планета на которой уже может быть жизнь. Ведь температура на поверхности составляет около 25 °C при том, что звезда слабее нашего Солнца в 8 раз, но планета находится к ней гораздо ближе. Находится планета в созвездии Парус в 36 световых лет от нас.

Планета Kepler 22b


Очень далекая от нас планета на расстоянии в 620 световых лет. Температура на планете вполне соответствует средней температуре на курортах в Греции, вот только по структуре она скорее больше напоминает Нептун, состоит в основном из огромного океана, поэтому если и есть жизнь, то в водных условиях. Так что подстраиваться придется к жизни на плаву.

Планета Gliese 667cc


Вторая планета в системе красного карлика звезды Gliese. Согласно предварительным расчетам температура на планете может быть либо -27 °C, а если атмосфера окажется по структуре, как земная, то температура будет уже +27 °C, и та и другая температура поверхности уже приемлема для жизни на другой от Земли планете.

Планета Gliese 581g


У этой планеты в той же планетарной системе Gliese 581 высокая вероятность наличия и атмосферы и воды, а ландшафт может представлять собой скалы, горы и равнины. Интересная особенность этой планеты – она всегда обращена к своей звезде одной стороной, то есть на ней нет смены дня и ночи. На дневной стороне температура довольно жаркая, как в пустыне Сахара на Земле (+71 °C), а на ночной холодно, но терпимо, как русской зимой в Сибири (-34 °C)

Планета Gliese 163c


Это очень теплая, даже скорее жаркая планета, где температура +70 °C, что ставит под сомнение растительность на поверхности, но и при таких температурах на планете может быть жизнь организмов. И человек может адаптироваться при помощи специальных солнцезащитных систем и понижающих температуру в закрытых помещениях к жизни на данной планете.

Планета HD 40307 g


Планета у звезды HD 40307 в созвездии Живописца, которая в планетарной системе шестая по счету и терпимая к жизненным условиям на поверхности. Год на планете меньше, чем на Земле – 200 суток и на ней возможно наличие воды.

P/S


(Рассвет на планете Земля и как выглядел бы рассвет если бы наша планета была бы в других звездных системах)

Так что есть планеты и за пределами Солнечной системы на которых возможна жизнь, но самая красивая и добрая из них это наша голубая планета Земля!