Оба реагирующих веществ в водном растворе находятся в виде ионов. Основные положения теории электролитической диссоциации

Образование осадка сводится к взаимодействию ионов Ag + и С L - , так как образуется малодиссоциирующее соединение(краткое ионное уравнение)

Ag + + CL - = AgCL

Полное ионное уравнение имеет вид:

Na + + C
+ Ag + +
= AgCL +Na + +

Реакция с образованием газов

Na 2 S + 2HCL1 = 2NaCL + H 2 S

Для простоты и удобства напишем сразу уравнение реакции в сокращенной форме:

2H + +
=H 2 S

если одно из взятых веществ является трудно растворимым в воде (неэлектролит), то формула этого вещества записывается в молекулярной форме:

Ca 3 P 2 + 6HNO 3 = 3Ca(NO 3) 2 + 2PH 3

Ca 3 P 2 + 6H + = 3Ca 2+ + 2PH 3

Реакция с образованием слабых электролитов.К слабым электролитам относятся вещества со степенью диссоциации меньше 2%, например вода, слабые кислоты, трудно растворимые основания соли и др.

Пример1. Ca(HCO 3 ) 2 + 2HBr = CaBr 2 +2H 2 O + 2CO 2

HC+ H + = H 2 O + CO 2

Пример2. 2CrOHSO 4 +H 2 SO 4 = Cr 2 (SO 4 ) 3 + 2H 2 O

CrOH 2+ + H + = Cr 3+ + H 2

Тема:Гидролиз солей

Гидролиз соли - это реакция обмена ионов соли с ионами воды.

При гидролизе смещается равновесие диссоциации воды вслед­ствие связывания одного из ионов в слабый электролит.

При связывании ионов Н + в растворе накапливаются ионы
, реакция среды будет щелочная, а при связывании ионов
накапливаются ионы Н + - среда кислая.

Разберем случаи гидролиза, пользуясь понятиями «слабый» и «сильный» электролит.

I. Соль образована сильным основанием и сильной кислотой (гидролизу не подвергается). При растворении в воде в присутст­вии индикатора лакмуса нитрата калия окраска лакмуса не из­меняется. Уравнение реакции в молекулярной и ионной формах имеет вид:

KNO 3 +H 2 O
KOH+HNO 3

K = +N+HOH
K + +O
+H + +N

Среда нейтральная, так как ионы Н + и ОН" не связываются дру­гими зонами в слабый электролит.

П. Соль образована сильным основанием и слабой кислотой (гидролиз протекает по аниону). Это имеет место при гидролизе соли
. При диссоциации ионы соли
и
взаимодей­ствуют с ионами Н + и
из воды. При этом ацетат-ионы (
) связываются с ионами водорода + ) в молекулы сла­бого электролита - уксусной кислоты (СН 3 СООН) , а ионы
накапливаются в растворе, сообщая ему щелочную реак­цию, так как ионы К + не могут связать ионы
(КОН яв­ляется сильным электролитом).

Уравнения гидролиза соли СН 3 СООК будут иметь следующий вид:

в молекулярной форме

в ионной форме

в сокращенной ионной форме

Соль образована слабым основанием и сильной кислотой (гидролиз протекает по катиону). Это имеет место при гидролизе соли NH 4 C 1 (NH 4 OH - слабое основание, НС1 - сильная кислота), Отбросим ион
, так как он с катионом воды дает сильный элей тролит, тогда в сокращенной ионной форме уравнение гидролиза примет следующий вид:

В молекулярной форме:

Ионы OH - связываются в слабый электролит, а ионы H + накапливаются – среда кислая.

Соль образована основанием и слабой кислотой(гидролиз протекает по катиону аниону). Это имеет место при гидролизе соли CH 3 COONH 4 . Запишем уравнение в ионной форме:

Образуется слабое основание и слабая кислота. Степень диссоциация которых приблизительно одинакова. Поэтому при наличии гидролиза среда будет приблизительно нейтральная.

тема: Неметаллы

Общая характеристика неметаллов. Число неметаллов, известных в природе, по сравнению с металлами относительно невелико. Их размещение в периодической системе химических элементов Д. И. Менделеева показано в таблице 5.

Из таблицы 5 видно, что элементы - неметаллы в основном расположены в правой верхней части периодической системы химических элементов Д. И. Менделеева. Так как в периодах постепенно увеличиваются заряды ядер атомов элементов и уменьшаются атомные радиусы, а в главных подгруппах с увеличением порядков номера элемента атомные радиусы резко возрастают, то становиться понятным, почему атомы неметаллов сильнее притягивают внешние электроны по сравнению с атомами металлов. Таким образом, у неметаллов преобладают окислительные свойства, т. е. способность присоединять электроны. Особо ярко эти свойства важны у неметаллов VII и VI групп главных подгрупп 2-го и 3-го периодов. Самый сильный окислитель – фтор. Окислительные способности элементов – неметаллов зависят от численного значения электроотрицательности и увеличиваются в следующем порядке:

Si, B, H, P, C, S, I, N, Cl, O, F

Такая же закономерность в изменении окислительных свойств характерна для соответствующих простых веществ. Ее можно наблюдать в реакциях указанных неметаллов с водородом и металлами. Так, фтор более энергично реагирует с водородом и металлами:

Кислород реагирует менее энергично:

Фор как самый активный неметалл в химических реакциях вообще не проявляет восстановительных свойств, т. е. фтор не способен отдавать электроны.

Кислород же в соединение с фтором (

) проявляет положительную степень окисления, т. е. может быть восстановителем.

Восстановительные свойства, хотя и в значительно более слабой степени по сравнению с металлами, проявляют и все остальные элементы – неметаллы и соответствующие им простые вещества, причем эти свойства постепенно возрастают от кислорода к кремнию:

O, Cl, N, I, S, C, P, H, B, Si

Например, хлор непосредственно с кислородом не соединяется, но косвенным путем можно получить оксид хлора , в которых хлор проявляет положительную степень окисления. Азот, как вам известно (II), при высокой температуре непосредственно соединяется с кислородом и проявляет при этом восстановительные свойства:

Еще энергичнее с кислородом реагирует сера:

причем сера примерно в равной степени проявляет как восстановительные, так и окислительные свойства. Так, при нагревании паров серы с водородом происходит реакция:

Тема:Металлы.

Чистые металлы в твердом состоянии - это кристаллы, в кото­рых частицы вещества расположены в определенном геометричес­ком порядке, образуя кристаллическую решетку, в узлах которой находятся положительно заряженные ионы и нейтральные атомы, а между ними перемещаются свободные электроны.

Атомы в кристаллической решетке металлов расположены очень близко друг к другу и их внешние электроны могут переме­щаться не только вокруг одного атома, а вокруг многих. Таким об­разом, внешние электроны свободно перемещаются по всему метал­лу» образуя так называемый «электронный газ».

Существование свободных электронов в металлах подтвержда­ется тем, что металлы обладают большой электрической проводи­мостью, при нагревании все металлы испускают поток свободных электронов.

Все металлы, за исключением ртути, при обычных условиях, твердые вещества. В компактном состоянии (в виде пластинки, слитка) для металлов характерен металлический блеск из-за отра­жения света от их поверхности. В тонкоизмельченном состоянии металлический блеск сохраняют только магний и алюминий, по­рошки остальных металлов черного или темно-серого цвета.

Большинство металлов имеют белый серебристый цвет, не прозрачны (так как почти все они в одинаковой мере поглощают лучи длинных и коротких волн света). Цезий и золото - желтого цвета, медь - желто-красного.

В технике металлы принято делить на группы:

по цвету - черные (железо, хром, марганец и их сплавы); цветные - все остальные;

по плотности - легкие - плотность меньше 5 г/см 8 (литий, калий, кальций, алюминий и др.); тяжелые - плотность больше 5 г/см 3 (олово, свинец, ртуть, железо и др.). Самым легким металлом является литий (пл. 0,53), самым тяжелым - осмий (пл. 22,5);

по температуре плавления - легкоплавкие - т. пл. 350. °С и ниже (свинец 327 °С, олово 232 °С, натрий 98 °С, калий 63 °С, цезий 28 °С и др.); тугоплавкие - т. пл. выше 350 °С (железо 1539 °С, хром 1875 °С). Самый тугоплавкий металл вольфрам, т. пл. 3380 °С. 4

Важными физическими свойствами металлов являются электрическая проводимость и теплопроводность, которые обусловлены наличием во всех металлах свободных электронов.

Наибольшую электрическую проводимость имеет серебро, затем медь, золото, хром, алюминий, магний.

Из механических свойств для металлов характерны пла­стичность, ковкость, тягучесть:

пластичность - это свойство металлов деформироваться без трещин, под действием определенной нагрузки;

ковкость - это свойство металлов деформироваться без трещин под влиянием сжатия при температуре ниже температуры плавле­ния металла;

тягучесть -способность металлов вытягиваться в нить.

Металлы с малой тягучестью хрупки, а металлы с большой тягу­честью устойчивы на разрыв.

Наибольшей пластичностью, ковкостью и тягучестью обладает золото: из него можно изготовить пластинки толщиной 0,003 мм и вытягивать в проволоку, невидимую невооруженным глазом. В наи­меньшей степени этими качествами обладают висмут и марганец.

Общим, присущим исключительно металлам, химическим свой­ством является способность только отдавать электроны, превра­щаясь в свободные, положительно заряженные ионы:

Способность отдавать электроны выражена у металлов по-раз­ному. Мерой прочности связи электронов в атомах является энергия ионизации. Наименьшей энергией ионизации обладают щелочные металлы, поэтому они являются энергичными восстановителями.

Восстановительными свойствами металлов обусловлена их спо­собность вступать в реакции с различными окислителями: неметал­лами, кислотами, солями менее активных металлов.

Названия всех соединений металлов с неметаллами оканчивают­ся на -ид (оксид, хлорид, нитрид, сульфид и т. д.).

1. Металлы взаимодействуют с неметаллами:

а) большинство металлов хорошо реагируют с кислородом, да­вая оксиды:

б) легко соединяются с галогенами, образуя галогениды:

2 Fe + 3 Cl 2 = 2 FeCl 3

в) с азотом металлы образуют нитриды:

г) при определенных условиях металлы взаимодействуют с се­рой, образуя сульфиды:

д) с водородом взаимодействуют непосредственно только щелоч­ные и щелочно-земельные металлы, образуя гидриды:

П

о степени легкости отдачи электронов в растворах металлы располагают в ряд (ряд стандартных электродных потенциалов)

Вода - одно из самых распространённых веществ в природе (гидросфера занимает 71 % поверхности Земли). Воде принадлежит важнейшая роль в геологии, истории планеты. Без воды невозможно существование живых организмов. Дело в том, что тело человека почти на 63% – 68% состоит из воды. Практически все биохимические реакции в каждой живой клетке - это реакции в водных растворах… В растворах же (преимущественно водных) протекает большинство технологических процессов на предприятиях химической промышленности, в производстве лекарственных препаратов и пищевых продуктов. И в металлургии вода чрезвычайно важна, причём не только для охлаждения. Не случайно гидрометаллургия - извлечение металлов из руд и концентратов с помощью растворов различных реагентов - стала важной отраслью промышленности.


Вода, у тебя нет ни цвета, ни вкуса, ни запаха,
тебя невозможно описать, тобой наслаждаются,
не ведая, что ты такое. Нельзя сказать,
что необходимо для жизни: ты сама жизнь.
Ты исполняешь нас с радостью,
которую не объяснишь нашими чувствами.
С тобой возвращаются к нам силы,
с которыми мы уже простились.
По твоей милости в нас вновь начинают
бурлить высохшие родники нашего сердца.
(А. де Сент-Экзюпери. Планета людей)

Мной написан реферат по теме "Вода — самое удивительное вещество в мире". Я выбрал эту тему потому что — это самая актуальная тема, так как вода это самое важное вещество на Земле без которого не может существовать ни один живой организм и не могут протекать ни какие биологические, химические реакции, и технологические процессы.

Вода — самое удивительное вещество на Земле

Вода — вещество привычное и необычное. Известный советский учёный академик И. В. Петрянов свою научно-популярную книгу о воде назвал "самое необыкновенное вещество в мире". А "Занимательная физиология", написанная доктором биологических наук Б. Ф. Сергеевым, начинается с главы о воде — "Вещество, которое создало нашу планету".
Учёные абсолютно правы: нет на Земле вещества, более важного для нас, чем обыкновенная вода, и в тоже время не существует другого такого вещества, в свойствах которого было бы столько противоречий и аномалий, сколько в её свойствах.

Почти 3/4 поверхности нашей планеты занято океанами и морями. Твёрдой водой — снегом и льдом — покрыто 20% суши. От воды зависит климат планеты. Геофизики утверждают, что Земля давно бы остыла и превратилась в безжизненный кусок камня, если бы не вода. У неё очень большая теплоёмкость. Нагреваясь, она поглощает тепло; остывая, отдаёт его. Земная вода и поглощает, и возвращает очень много тепла и тем самым "выравнивает" климат. А от космического холода предохраняет Землю те молекулы воды, которые рассеяны в атмосфере — в облаках и в виде паров… без воды обойтись нельзя — это самое важное вещество на Земле.
Строение молекулы воды

Поведение воды "нелогично". Получается, что переходы воды из твёрдого состояния в жидкое и газообразное происходит при температурах, намного более высоких, чем следовало бы. Этим аномалиям найдено объяснение. Молекула воды H 2 O построена в виде треугольника: угол между двумя связками кислород — водород 104 градуса. Но поскольку оба водородных атома расположены по одну сторону от кислорода, электрические заряды в ней рассредоточиваются. Молекула воды полярная, что является причиной особого взаимодействия между разными её молекулами. Атомы водорода в молекуле H 2 O, имея частичный положительный заряд, взаимодействуют с электронами атомов кислорода соседних молекул. Такая химическая связь называется водородной. Она объединяет молекулы H 2 O в своеобразные полимеры пространственного строения; плоскость, в которой расположены водородные связи, перпендикулярны плоскости атомов той же молекулы H 2 O. Взаимодействием между молекулами воды и объясняются в первую очередь незакономерно высокие температуры её плавления и кипения. Нужно подвести дополнительную энергию, чтобы расшатать, а затем разрушить водородные связи. И энергия эта очень значительна. Вот почему, кстати, так велика теплоёмкость воды.

Какие связи имеет H 2 O?

В молекуле воды имеются две полярные ковалентные связи Н-О.

Они образованы за счёт перекрывания двух одноэлектронных р — облаков атома кислорода и одноэлектронных S — облаков двух атомов водорода.

В молекуле воды атом кислорода имеет четыре электронных пары. Две из них участвуют в образовании ковалентных связей, т.е. являются связывающими. Две другие электронные пары являются не связывающими.

В молекуле имеются четыре полюс зарядов: два — положительные и два — отрицательные. Положительные заряды сосредоточены у атомов водорода, так как кислород электроотрицательнее водорода. Два отрицательных полюса приходятся на две не связывающие электронные пары кислорода.

Подобное представление о строении молекулы позволяет объяснить многие свойства воды, в частности структуру льда. В кристаллической решётке льда каждая из молекул окружена четырьмя другими. В плоскостном изображении это можно представить так:



На схеме видно, что связь между молекулами осуществляется посредством атома водорода:
Положительно заряженный атом водорода одной молекулы воды притягивается к отрицательно заряженному атому кислорода другой молекулы воды. Такая связь получила название водородной (её обозначают точками). По прочности водородная связь примерно в 15 — 20 раз слабее ковалентной связи. Поэтому водородная связь легко разрывается, что наблюдается, например, при испарении воды.

Структура жидкой воды напоминает структуру льда. В жидкой воде молекулы также связаны друг с другом посредством водородных связей, однако структура воды менее "жёсткая", чем у льда. Вследствие теплового движения молекул в воде одни водородные связи разрываются, другие образуются.

Физические свойства H 2 O

Вода, H 2 O, жидкость без запаха, вкуса, цвета (в толстых слоях голубоватая); плотность 1 г/см 3 (при 3,98 градусах), t пл =0 градусов, t кип =100 градусов.
Разная бывает вода: жидкая, твёрдая и газообразная.
Вода — это единственное вещество в природе, которое в земных условиях существует во всех трёх агрегатных состояниях:

жидком — вода
твёрдом — лёд
газообразном — пар

Советский учёный В. И. Вернадский писал: "Вода стоит особняком в истории нашей планеты. Нет природного тела, которое могли бы сравниться с ней по влиянию на ход основных, самых грандиозных геологических процессов. Нет земного вещества — минерала горной породы, живого тела, которое её бы не заключало. Всё земное вещество ею проникнуто и охвачено".

Химические свойства H 2 O

Из химических свойств воды особенно важны способность её молекул дисоциировать (распадаться) на ионы и способность воды растворять вещества разной химической природы. Роль воды, как главного и универсального растворителя определяется прежде всего полярностью её молекул (смещением центров положительных и отрицательных зарядов) и, как следствие, её чрезвычайно высокий диэлектрической проницаемостью. Разноименные электрические заряды, и в частности ионы, притягиваются друг к другу в воде в 80 раз слабее, чем притягивались бы в воздухе. Силы взаимного притяжения между молекулами или атомами погружённого в воду тела также слабее, чем на воздухе. Тепловому движению в этом случае легче разобщить молекулы. Оттого и происходит растворение, в том числе многих трудно растворимых веществ: капля камень точит…

Диссоциация (распадение) молекул воды на ионы:
H 2 O → H + +OH, или 2H 2 O → H 3 O (ион гидроксия) +ОН
в обычных условиях крайне незначительна; диссоциирует в среднем одна молекула из 500000000. При этом надо иметь в виду, что первое из приведённых уравнений сугубо условное: не может существовать в водной среде лишённый электронной оболочки протон Н. Он сразу соединяется с молекулой воды, образуя ион гидроксия H 3 O. Считают даже, что ассоцианты водных молекул в действительности распадаются на значительно более тяжёлые ионы, такие, например, как
8H 2 O → HgO 4 +H 7 O 4 , а реакция H 2 O → H + +OH - - лишь сильно упрощенная схема реального процесса.

Реакционная способность воды сравнительно невелика. Правда, некоторые активные металлы способны вытеснять из неё водород:
2Na+2H 2 O → 2NaOH+H 2 ,

а в атмосфере свободного фтора вода может гореть:
2F 2 +2H 2 O → 4HF+O 2 .

Из подобных же молекулярных ассоциатов соединений молекул состоят и кристаллы обычного льда. "Упаковка" атомов в таком кристалле не ионная, и лёд плохо проводит тепло. Плотность жидкой воды пи температуре близкой к нулю, больше чем у льда. При 0°C 1гр льда занимает объём 1,0905 см 3 , а 1гр жидкой воды — 1,0001 см 3 . И лёд плавает, оттого и не промерзают насквозь водоёмы, а лишь покрываются ледяным покровом. В этом проявляется ещё одна аномалия воды: после плавления она сначала сжимается, а уж потом, на рубеже 4 градусов, при дальнейшем процессе начинает расширятся. При высоких давлениях обычный лёд можно превратить в так называемый лёд — 1, лёд — 2, лёд — 3, и т. д. — более тяжёлые и плотные кристаллические формы этого вещества. Самый твёрдый, плотный и тугоплавкий пока лёд — 7 — полученный при давлении 3 кило Па. Он плавится при 190 градусах.

Круговорот воды в природе

Организм человека пронизан миллионами кровеносных сосудов. Крупные артерии и вены соединяют друг с другом основные органы тела, более мелкие оплетают их со всех сторон, тончайшие капилляры доходят практически до каждой отдельной клетки. Копаете ли вы яму, сидите ли на уроке или блаженно спите, по ним беспрерывно течёт кровь, связывая в единую систему человеческого организма мозг и желудок, почки и печень, глаза и мускулы. Для чего же нужна кровь?

Кровь доносит до каждой клетки вашего тела кислород из лёгких и питательные вещества из желудка. Кровь собирает отходы жизнедеятельности из всех, даже самых укромных уголков организма, освобождая его от углекислого газа и других ненужных, в том числе опасных веществ. Кровь разносит по всему телу особые вещества — гормоны, которые регулируют и согласовывают работу разных органов. Иными словами, кровь соединяет разные части тела в единую систему, в слаженный и работоспособный организм.

Так же кровеносная система есть и у нашей планеты. Кровь Земли — это вода, а кровеносные сосуды — реки, речушки, ручьи и озёра. И это не просто сравнение, художественная метафора. Вода на Земле играет ту же роль, что и кровь в организме человека, и как недавно заметили учёные, структура речной сети очень похожа на структуру кровеносной системы человека. "Возница природы" — так назвал воду великий Леонардо да Винчи именно она, переходя из почвы в растения, из растений в атмосферу, стекая по рекам с материков в океаны и возвращаясь обратно с воздушными потоками, соединяя друг с другом различные компоненты природы, превращая их в единую географическую систему. Вода не просто переходит из одного природного компонента в другой. Как и кровь, она переносит с собой огромное количество химических веществ, экспортируя их из почвы в растения, с суши в озёра и океаны, из атмосферы на землю. Все растения могут потреблять питательные вещества, содержащиеся в почве, только с водой, где они находятся в растворённом состоянии. Если бы не приток воды из почвы в растения, все травы, даже растущие на самых богатых почвах, погибли бы "от голода", уподобившись купцу, умершему от голода на сундуке с золотом. Вода снабжает питательными веществами и обитателей рек, озёр и морей. Ручьи, весело стекающие с полей и лугов во время весеннего таянья снега или после летних дождей, собирают по пути хранящиеся в почве химические вещества и доносят их до жителей водоёмов и моря, связывая тем самым наземные и водные участки нашей планеты. Самый богатый "стол" образуется в тех местах, где несущие питательные вещества реки впадают в озёра и моря. Поэтому такие участки побережий — эстуарии — отличаются буйством подводной жизни. А кто удаляет отходы, образующиеся в результате жизнедеятельности различных географических систем? Опять же вода, причём в должности акселератора она работает намного лучше кровеносной системы человека, которая лишь частично выполняет эту функцию. Особенно важна очистительная роль воды сейчас, когда человек отравляет окружающую среду отходами городов, промышленных и сельскохозяйственных предприятий. В организме взрослого человека содержится примерно 5-6 кг. крови, большая часть которой беспрерывно циркулирует между разными частями его тела. А сколько воды обслуживает жизнь нашего мира?

Все воды на земле не входящие в состав горных пород, объединяются понятием "гидросфера". Её вес столь велик, что обычно его измеряют не в килограммах или в тоннах, а в кубических километрах. Один кубический километр — это куб с размером каждого ребра в 1 км., постоянно занятого водой. Вес 1 км 3 воды равен 1 млрд. т. На всей земле содержится 1,5 млрд. км 3 воды, что по весу равно примерно 1500000000000000000 тонн! На каждого человека приходится по 1,4 км 3 воды, или по 250 млн. т. Пей, не хочу!
Но к сожалению, всё не так просто. Дело в том, что 94% этого объёма составляют воды мирового океана, не пригодные для большинства хозяйственных целей. Лишь 6% -это воды суши, из которых пресной всего 1/3, т.е. лишь 2% от всего объёма гидросферы. Основная масса этих пресных вод сосредоточена в ледниках. Значительно меньше их содержится под земной поверхностью (в неглубоко расположенных подземных, водных горизонтах, в подземных озёрах, в почвах, а так же в парах атмосферы. На долю рек, из которых в основном и берёт воду человек, приходится совсем мало — 1,2 тыс. км 3 . Совершенно ничтожен общий объём воды, единовременно содержащейся в живых организмах. Так что воды, которую может потреблять человек и другие живые организмы, на нашей планете не так уж и много. Но почему же она не кончается? Ведь люди и животные постоянно пьют воду, растения испаряют её в атмосферу, а реки уносят в океан.

Почему не кончается вода на Земле?

Кровеносная система человека представляет собой замкнутую цепь, по которой беспрерывно течёт кровь, перенося кислород и углекислый газ, питательные вещества и отходы жизнедеятельности. Этот поток никогда не кончается, потому что представляет собой круг или кольцо, а, как известно, "у кольца нет конца". По этому же принципу устроена и водяная сеть нашей планеты. Вода на Земле находится в постоянном круговороте, и убыль её в одном звене сразу же восполняется за счёт поступления из другого. Движущей силой круговорота воды является солнечная энергия и сила тяжести. За счёт круговорота воды все части гидросферы тесно объединены и связывают между собой другие компоненты природы. В самом общем виде круговорот воды на нашей планете выглядит следующим образом. Под действием солнечных лучей вода испаряется с поверхности океана и суши и поступает в атмосферу, причём испарение с поверхности суши осуществляется, как реками и водоёмами, так почвой, растениями. Часть воды сразу возвращается с дождями обратно в океан, а часть переносится ветрами на сушу, где выпадают в виде дождей и снега. Попадая в почву, вода частично впитывается в неё, пополняя запасы почвенной влаги и подземных вод, частично стекает по поверхности в реки и водоёмы почвенная влага частично переходит в растения, которые испаряют её в атмосферу, и частично стекает в реки, только с меньшей скоростью. Реки, питающиеся водой из поверхностных ручьёв и подземных вод, несут воду в Мировой океан, восполняя её убыль. Вода испаряется с его поверхности, снова оказывается в атмосфере, и круговорот замыкается. Такое же движение воды между всеми компонентами природы и всеми участками земной поверхности происходит постоянно и беспрерывно в течение многих миллионов лет.

Надо сказать, что круговорот воды не полностью замкнут. Часть её, попадая в верхние слои атмосферы, разлагается под действием солнечных лучей и уходит в космос. Но эти незначительные потери постоянно восполняются за счёт поступления воды из глубинных слоёв земли при вулканических извержениях. За счёт этого объём гидросферы постепенно увеличивается. по некоторым расчётам 4 млрд. лет назад объём её составлял 20 млн. км 3 , т.е. был в семь тысяч раз меньше современного. В будущем количество воды на Земле, по-видимому, так же будет возрастать, если учесть, что объём воды в мантии Земли оценивается в 20 млрд. км 3 — это в 15 раз больше современного объёма гидросферы. Сравнивая объём воды в отдельных частях гидросферы с притоком воды в них и соседних звеньев круговорота, можно определить активность водообмена, т.е. время, за которое может полностью обновиться объём воды в Мировом океане, в атмосфере или почве. Медленнее всего обновляются воды в полярных ледниках (один раз за 8 тыс. лет). А быстрее всего обновляется речная вода, которая во всех реках на Земле полностью меняется за 11 дней.

Водный голод планеты

"Земля — планета поразительной голубизны"! — восторженно докладывали возвращавшиеся из далёкого Космоса после высадки на Луну американские астронавты. Да и могла ли наша планета выглядеть по-другому, если более 2/3 её поверхности занимают моря и океаны, ледники и озёра, реки, пруды и водохранилища. Но тогда, что означает явление, название которого вынесено в заголовках? Какой же "голод" может быть, если на Земле такое изобилие водоёмов? Да, воды на Земле более чем достаточно. Но нельзя забывать и о том, что жизнь на планете Земля, как считают учёные, впервые появилась в воде, а лишь потом вышли на сушу. Свою зависимость от воды организмы сохранили в ходе эволюции в течение многих миллионов лет. Вода — главный "строительный материал", из которого состоит их тело. В этом легко убедиться, проанализировав цифры следующие таблицы:

Последнее число этой таблицы свидетельствует о том, что в человеке весом 70 кг. содержится 50 кг. воды! Но ещё больше её в человеческом зародыше: в трёхдневном — 97%, в трёхмесячном — 91%, в восьмимесячном — 81%.

Проблема "водного голода" состоит в необходимости недержания определённого количества воды в организме, так как идёт постоянная потеря влаги в ходе различных физиологических процессов. Для нормального существования в условиях умеренного климата человеку необходимо получать с питьём и пищей около 3,5 литров воды в сутки, в пустыне это норма возрастает, как минимум до 7,5 литров. Без пищи человек может существовать около сорока дней, а без воды гораздо меньше — 8 дней. По данным специальных медицинских экспериментов при потере влаги в размере 6-8 % от веса тела человек впадает в полуобморочное состояние, при потере 10% - начинаются галлюцинации, при 12% человек уже не может восстанавливаться без специальной медицинской помощи, а при потере 20% наступает неизбежная смерть. Многие животные хорошо приспосабливаются к недостатку влаги. Наиболее известный и яркий пример этого — "корабль пустыни", верблюд. Он может весьма долго жить в жаркой пустыни, не потребляя питьевой воды и теряя без ущерба для своей работоспособности до 30% первоначального веса. Так, в одном из специальных испытаний верблюд за 8 дней работал под палящим летним солнцем потеряв 100 кг. из 450 кг. своего начального веса. А когда его подвели к воде, он выпил 103 литра и восстановил свой вес. Установлено, что до 40 литров влаги верблюд может получить путём преобразования жира накопленного в его горбу. Совершенно не употребляют питьевую воду такие пустынные животные, как тушканчики и кенгуровые крысы, - им хватает влаги, которую они получают с пищей, и воды, образующейся в их организме при окислении собственного жира, так же как у верблюдов. Ещё больше воды потребляют для своего роста и развития растения. Качан капусты "выпивает" за сутки более одного литра воды, одно дерево в среднем — более 200 литров воды. Конечно, это довольно приблизительная цифра — разные породы деревьев в разных природных условиях расходуют весьма и весьма различное количество влаги. Так растущий в пустыне саксаул тратит минимальное количество влаги, а эвкалипт, в который в некоторых местах называют "дерево-насос", пропускает через себя огромное количество воды, и по этой причине его насаждения используют для осушения болот. Так превратили в процветающую территорию заболоченные малярийные земли Колхидской низменности.

Уже сейчас около 10% населения нашей планеты испытывают недостаток в чистой воде. А если учесть, что 800 млн. дворов в сельской местности, где живёт около 25% всего человечества, не имеет водопровода, то проблема "водного голода" приобретает поистине глобальный характер. Особенно остра она в развивающихся странах, где плохой водой пользуется примерно 90% населения. Недостаток чистой воды становится одним из важнейших факторов, ограничивающих прогрессивное развитие человечества.

Приобретаемые вопросы об охране водных ресурсов

Вода применяется во всех областях хозяйственной деятельности человека. Практически невозможно назвать какой-либо производственный процесс, в котором не использовалась бы вода. В связи с бурным развитием промышленности, ростом населения городов расход воды увеличивается. Первостепенное значение приобретают вопросы охраны водных ресурсов и источников от истощения, а так же от загрязнения сточными водами. Всем известно, какой ущерб наносят сточные воды обитателям водоёмов. Ещё страшней для человека и всего живого на Земле появление в речных водах ядохимикатов, смываемых с полей. Так наличие в воде 2,1 части пестицида (эндрина) на миллиард частей воды достаточно для гибели всех находящихся в ней рыб. Огромную угрозу для человечества представляют сбрасываемые в реки неочищенные стоки населенных пунктов. Эта проблема решается путём сознания таких технологических процессов, в которых отработанная вода не сбрасывается в водоёмы, а после очистки снова возвращается в технологический процесс.

В настоящее время уделяется огромное внимание охране окружающей среды и в частности естественных водоёмов. Учитывая значение этой проблемы, у нас в стране не принимают закон об охране и рациональном использовании природных ресурсов. Конституция гласит: "Граждане России обязаны беречь природу, охранять её богатства".

Виды воды

Бромная вода — насыщенный раствор Br 2 в воде (3,5% по массе Br 2). Бромовая вода — окислитель, бромирующий агент в аналитической химии.

Аммиачная вода — образуется при контакте сырого коксового газа с водой, который концентрируется вследствие охлаждения газа или специально впрыскивается в него для вымывания NH3. В обоих случаях получают так называемую слабую, или скрубберную, аммиачную воду. Дистилляцией этой аммиачной воды с водяным паром и последующей дефлегмацией и конденсацией получают концентрированную аммиачную воду (18 — 20% NH 3 по массе), которую используют в производстве соды, как жидкое удобрение и др.

Cообщение # 7906, написанное 18-04-2019 в 20:52 МСК, удалено.

# 7732 · 15-11-2018 в 17:18 МСК · ip адрес записан · ·

спасибо, для доклада пойдёт)


Вода (оксид водорода) - бинарное неорганическое соединение с химической формулой Н 2 O. Молекула воды состоит из двух атомов водорода и одного - кислорода, которые соединены между собой ковалентной связью. При нормальных условиях представляет собой прозрачную жидкость, не имеющую цвета (при малой толщине слоя), запаха и вкуса. В твёрдом состоянии называется льдом (кристаллы льда могут образовывать снег или иней), а в газообразном - водяным паром. Вода также может существовать в виде жидких кристаллов (на гидрофильных поверхностях). Составляет приблизительно около 0,05 % массы Земли.

Водный раствор - разновидность раствора, в котором растворителем служит вода. Будучи превосходным растворителем, именно вода используется для приготовления большинства растворов в химии.

Вещества, которые плохо растворяются в воде, называют гидрофобными ("боящимися воды"), а хорошо в ней растворяющиеся - гидрофильными ("любящими воду"). Примером типичного гидрофильного соединения может служить хлорид натрия (поваренная соль).

Если вещество образует водный раствор, который хорошо проводит электрический ток, то он называется сильным электролитом; в противном случае - слабым. Сильные электролиты в растворе почти полностью распадаются на ионы (α→1), а слабые практически не распадаются (α→0).

Вещества, растворяющиеся в воде, но не распадающиеся на ионы (то есть находящие в растворе в молекулярном состоянии), называются неэлектролитами (пример - сахар).

При выполнении расчётов в уравнениях реакций, где взаимодействует один или несколько водных растворов, часто необходимо знать молярную концентрацию растворимого вещества.

Растворимость - способность вещества образовывать с другими веществами однородные системы - растворы, в которых вещество находится в виде отдельных атомов, ионов, молекул или частиц. Растворимость выражается концентрацией растворённого вещества в его насыщенном растворе либо в процентах, либо в весовых или объёмных единицах, отнесённых к 100 г или 100 см³ (мл) растворителя (г/100 г или см³/100 см³). Растворимость газов в жидкости зависит от температуры и давления. Растворимость жидких и твёрдых веществ - практически только от температуры. Все вещества в той или иной степени растворимы в растворителях. В случае, когда растворимость слишком мала для измерения, говорят, что вещество нерастворимо.

Зависимость растворимости веществ от температуры выражается с помощью кривых растворимости. По кривым растворимости производят различные расчёты. Например, можно определить массу вещества, которое выпадет в осадок из насыщенного раствора при его охлаждении.

Процесс выделения твёрдого вещества из насыщенного раствора при понижении температуры называется кристаллизацией. Кристаллизация играет огромную роль в природе-приводит к образованию некоторых минералов, участвует в процессах, протекающих в горных породах.

Состав любого раствора может быть выражен как качественно, так и количественно. Обычно, при качественной оценке раствора применяют такие понятия как, насыщенный , ненасыщенный , пересыщенный (или перенасыщенный ), концентрированный и разбавленный раствор.

Насыщенным называется раствор, в котором содержится максимально возможное при данных условиях (t, р) количество растворённого вещества. Насыщенный раствор часто находится в состоянии динамического равновесия с избытком растворённого вещества, при котором процесс растворения и процесс кристаллизации (выпадения вещества из раствора) протекают с одинаковой скоростью.

Для приготовления насыщенного раствора растворение вещества необходимо вести до образования осадка, не исчезающего при длительном хранении.

Ненасыщенным называется раствор, который содержит вещества меньше, чем его может раствориться при данных условиях.

Перенасыщенные растворы содержат в себе по массе больше растворённого вещества, чем его может раствориться в данных условиях. Образуются перенасыщенные растворы при быстром охлаждении насыщенных растворов. Они неустойчивы и могут существовать ограниченное время. Очень быстро лишнее растворённое вещество выпадает в осадок, а раствор превращается в насыщенный.

Следует отметить, что при изменении температуры насыщенный и ненасыщенный растворы могут легко обратимо превращаться друг в друга. Процесс выделения твёрдого вещества из насыщенного раствора при понижении температуры называется кристаллизацией . Кристаллизация и растворение играют огромную роль в природе: приводят к образованию минералов, имеют большое значение в атмосферных и почвенных явлениях. На основе кристаллизации в химии распространён метод очистки веществ, который называется перекристаллизацией.

Для приблизительного количественного выражения состава раствора используют понятия концентрированный и разбавленный растворы .

Концентрированным называется раствор, в котором масса растворённого вещества соизмерима с массой растворителя, т.е. не отличается от него более чем в 10 раз.

Если же масса растворённого вещества более чем в десять раз меньше массы растворителя, то такие растворы называются разбавленными .

Однако следует помнить, что деление растворов на концентрированные и разбавленные условно, и чёткой границы между ними нет.

Точный количественный состав растворов выражают при помощи массовой доли растворённого вещества , его молярной концентрации , а также некоторыми другими способами.

2.Вещество, которое в водном растворе не диссоциирует на ионы: H 2SO4 2) Mg(OH)2 3) FeCl3 4) NaOH.

Картинка 2 из презентации «Химические свойства оснований» к урокам химии на тему «Классы неорганических соединений»

Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать картинку для урока химии, щёлкните по изображению правой кнопкой мышки и нажмите «Сохранить изображение как...». Для показа картинок на уроке Вы также можете бесплатно скачать презентацию «Химические свойства оснований.ppt» целиком со всеми картинками в zip-архиве. Размер архива - 128 КБ.

Скачать презентацию

Классы неорганических соединений

«Химические свойства оснований» - Лабораторный опыт. Вещество, которое в водном растворе не диссоциирует на ионы. Сложные неорганические соединения. Применение оснований. Щёлочи. Реакция нейтрализации. Вещество. Взаимодействие нерастворимых оснований с кислотами. Взаимодействие оснований с кислотными оксидами. Установите соответствие.

«Важнейшие классы неорганических соединений» - Водород. Трудности. Уравнения реакции. Прогресс. Результаты. Формулы. Основные классы неорганических соединений. Основание. Группы атомов. Найдите потерявшихся родственников. Масса полученной соли. Степень окисления. Свойства оснований. Урок. Найдите лишнее в каждом ряду. Кислород. Кислота. Металл. Кварцевый песок.

«Классы неорганических соединений» - Кислоты. 1.Назовите известные вам классы неорганических соединений. Осуществите превращения. Основания. Соли. Классы неорганических веществ. Генетическая связь между неорганическими соединениями. Оксиды.

«Основания» - Основания (по составу). Генетическая связь. Задания. Классификация. Основания. Нерастворимые основания (расставьте коэффициенты). Получение 1) щелочь + соль NaOH+CuSO4 ? Cu(OH)2+Na2SO4. Основные оксиды. Осуществить превращения: CaO ? Ca(OH)2 ? CaCI2. Классификация оснований. Содержание. Получение 1) щелочь + соль NaOH+ZnSO4? Zn(OH)2+Na2SO4.

«Основания, соли, кислоты, оксиды» - Наиболее сильные основные свойства. Кислоты. Кислотные свойства. Оксиды, основания, кислоты и соли. Выберите из перечня веществ кислоту. Соль. Основания. Выберите из перечня веществ соль. Классификация оксидов. Химические свойства – сводная таблица. Генетическая связь неорганических веществ. Основные оксиды.

«Основные классы неорганических соединений» - Укажите какие из перечисленных реакций относятся к реакциям нейтрализации? Кислотные оксиды реагируют: Тяжело в учении, легко в бою!!! Путешествие на подводной лодке «Генезис". Работа боцмана. Основайские острова. Соляндия. Химический диктант. 1. С основными оксидами 2. С основаниями 3. С водой 4. С солями.

Всего в теме 12 презентаций

Электролиты и неэлектролиты

Из уроков физики известно, что растворы од­них веществ способны проводить электрический ток, а других - нет.

Вещества, растворы которых проводят электрический ток, называются электролитами .

Вещества, растворы кото­рых не проводят электрический ток, называются неэлектролитами . Например растворы сахара, спирта, глюкозы и некоторых других веществ не проводят элек­трический ток.

Электролитические диссоциация и ассоциация

Почему же растворы элек­тролитов проводят электри­ческий ток?

Шведский ученый С. Ар­рениус, изучая электропро­водность различных веществ, пришел в 1877 г. к выводу, что причиной электропровод­ности является наличие в растворе ионов , которые образуются при растворении электролита в воде.

Процесс распада электролита на ионы называ­ется электролитической диссоциацией .

С. Аррениус, который придерживался физиче­ской теории растворов, не учитывал взаимодей­ствия электролита с водой и считал, что в раство­рах находятся свободные ионы. В отличие от него русские химики И. А. Каблуков и В. А. Кистяков- ский применили к объяснению электролитической диссоциации химическую теорию Д. И. Менделеева и доказали, что при растворении электролита про­исходит химическое взаимодействие растворенного вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы . Они считали, что в растворах находятся не свободные, не «голые» ионы, а гидратированные, т. е. «одетые в шубку» из молекул воды.

Молекулы воды представляют собой диполи (два полюса), так как атомы водорода расположены под углом 104,5°, благодаря чему молекула имеет угло­вую форму. Молекула воды схематически представ­лена ниже.

Как правило, легче всего диссоциируют веще­ства с ионной связью и, соответственно, с ионной кристаллической решеткой, так как они уже состо­ят из готовых ионов. При их растворении диполи во­ды ориентируются противоположно заряженными концами вокруг положительных и отрицательных ионов электролита.

Между ионами электролита и диполями воды возникают силы взаимного притяжения . В ре­зультате связь между ионами ослабевает, и про­исходит переход ионов из кристалла в раствор. Очевидно, что последовательность про­цессов, происходящих при диссоциации веществ с ионной связью (солей и щелочей), будет такой:

1) ориентация молекул (диполей) воды около ио­нов кристалла;

2) гидратация (взаимодействие) молекул воды с ионами поверхностного слоя кристалла;

3) диссоциация (распад) кристалла электролита на гидратированные ионы.

Упрощенно происходящие процессы можно от­разить с помощью следующего уравнения:

Аналогично диссоциируют и электролиты, в мо­лекулах которых ковалентная связь (например, мо­лекулы хлороводорода HCl, смотри ниже); только в этом случае под влиянием диполей воды происходит превращение ковалентной полярной связи в ион­ную; последовательность процессов, происходящих при этом, будет такой:

1) ориентация молекул воды вокруг полюсов моле­кул электролита;

2) гидратация (взаимодействие) молекул воды с молекулами электролита;

3) ионизация молекул электролита (превращение ковалентной полярной связи в ионную);

4) диссоциация (распад) молекул электролита на гидратированные ионы.


Упрощенно процесс диссоциации соляной кис­лоты можно отразить с помощью следующего урав­нения:

Следует учитывать, что в растворах электро­литов хаотически движущиеся гидратированные ионы могут столкнуться и вновь объединиться между собой. Этот обратный процесс называется ассоциацией. Ассоциация в растворах происходит параллельно с диссоциацией, поэтому в уравнени­ях реакций ставят знак обратимости.


Свойства гидратированных ионов отличаются от свойств негидратированных. Например, негидрати­рованный ион меди Cu 2+ - белый в безводных кри­сталлах сульфата меди (II) и имеет голубой цвет, когда гидратирован, т. е. связан с молекулами во­ды Cu 2+ nH 2 O. Гидратированные ионы имеют как постоянное, так и переменное число молекул воды.

Степень электролитической диссоциации

В растворах электролитов наряду с ионами при­сутствуют и молекулы. Поэтому растворы электро­литов характеризуются степенью диссоциации , ко­торая обозначается греческой буквой а («альфа»).

Это отношение числа частиц, распавшихся на ионы (N g), к общему числу растворенных частиц (N p).

Степень диссоциации электролита определяется опытным путем и выражается в долях или про­центах. Если а = 0, то диссоциация отсутствует, а если а = 1, или 100 %, то электролит полностью распадается на ионы. Различные электролиты име­ют различную степень диссоциации, т. е. степень диссоциации зависит от природы электролита. Она также зависит и от концентрации: с разбавлением раствора степень диссоциации увеличивается.

По степени электролитической диссоциации электролиты делятся на сильные и слабые.

Сильные электролиты - это электролиты, кото­рые при растворении в воде практически полностью диссоциируют на ионы. У таких электролитов зна­чение степени диссоциации стремится к единице.

К сильным электролитам относятся:

1) все растворимые соли;

2) сильные кислоты, например: H 2 SO 4 , HCl, HNO 3 ;

3) все щелочи, например: NaOH, KOH.

Слабые электролиты - это такие электроли­ты, которые при растворении в воде почти не дис­социируют на ионы. У таких электролитов значе­ние степени диссоциации стремится к нулю.

К слабым электролитам относятся:

1) слабые кислоты - H 2 S, H 2 CO 3 , HNO 2 ;

2) водный раствор аммиака NH 3 H 2 O;

4) некоторые соли.

Константа диссоциации

В растворах слабых электролитов вследствие их неполной диссоциации устанавливается динамичес­кое равновесие между недиссоциированными моле­кулами и ионами . Например, для уксусной кислоты:

Можно применить к этому равновесию закон действующих масс и записать выражение констан­ты равновесия:

Константу равновесия, характеризующую про­цесс диссоциации слабого электролита, называют константой диссоциации .

Константа диссоциации характеризует способ­ность электролита (кислоты, основания, воды) диссо­циировать на ионы . Чем больше константа, тем лег­че электролит распадается на ионы, следовательно, тем он сильнее. Значения констант диссоциации для слабых электролитов приводятся в справочниках.

Основные положения теории электролитической диссоциации

1. При растворении в воде электролиты диссо­циируют (распадаются) на положительные и отри­цательные ионы.

Ионы - это одна из форм существования хими­ческого элемента. Например, атомы металла натрия Na 0 энергично взаимодейству­ют с водой, образуя при этом щелочь (NaOH) и водород Н 2 , в то время как ионы натрия Na + таких продуктов не обра­зуют. Хлор Cl 2 имеет желто­зеленый цвет и резкий запах, ядовит, а ионы хлора Cl — бесцветны, не ядовиты, лишены запаха.

Ионы - это положительно или отрицательно заряженные частицы, в которые превращаются атомы или группы атомов одного или нескольких химических элементов в результате отдачи или присоединения электронов.

В растворах ионы беспорядочно передвигаются в различных направлениях.

По составу ионы делятся на простые - Cl — , Na + и сложные - NH 4 + , SO 2 — .

2. Причиной диссоциации электролита в вод­ных растворах является его гидратация, т. е. взаи­модействие электролита с молекулами воды и раз­рыв химической связи в нем.

В результате такого взаимодействия образуются гидратированные, т. е. связанные с молекулами во­ды, ионы. Следовательно, по наличию водной обо­лочки ионы делятся на гидратированные (в раствоpax и кристаллогидратах) и негидратированные (в безводных солях).

3. Под действием электрического тока положитель­но заряженные ионы движутся к отрицательному по­люсу источника тока - катоду и поэтому называют­ся катионами, а отрицательно заряженные ионы движутся к положительному полюсу ис­точника тока - аноду и по­этому называются анионами.

Следовательно, существу­ет еще одна классификация ионов - по знаку их заряда .

Сумма зарядов катионов (Н + , Na + , NH 4 + , Cu 2+) равна сумме зарядов анионов (Cl — , OH — , SO 4 2-), вследствие че­го растворы электролитов (HCl, (NH 4) 2 SO 4 , NaOH, CuSO 4) остаются электронейтральными.

4. Электролитическая диссоциация - процесс обратимый для слабых электролитов.

Наряду с процессом диссоциации (распад элек­тролита на ионы) протекает и обратный процесс - ассоциация (соединение ионов). Поэтому в уравне­ниях электролитической диссоциации вместо знака равенства ставят знак обратимости, например:

5. Не все электролиты в одинаковой мере диссо­циируют на ионы.

Зависит от природы элек­тролита и его концентрации. Химические свойства растворов электролитов определяются свойствами тех ионов, которые они образуют при диссоциации.

Свойства растворов слабых электролитов об­условлены молекулами и ионами, образовавшими­ся в процессе диссоциации, которые находятся в динамическом равновесии друг с другом.

Запах уксусной кислоты обусловлен наличием молекул CH 3 COOH, кислый вкус и изменение окра­ски индикаторов связаны с наличием в растворе ионов H + .

Свойства растворов сильных электролитов опре­деляются свойствами ионов, которые образуются при их диссоциации.

Например, общие свойства кислот, такие как кислый вкус, изменение окраски индикаторов и др., обусловлены наличи­ем в их растворах катионов водорода (точнее, ионов оксония H 3 O +). Общие свойства щелочей, такие как мылкость на ощупь, изменение окраски индикаторов и др. связаны с присутствием в их рас­творах гидроксид-ионов OH — , а свойства солей - с распадом их в растворе на катионы металла (или аммония) и анионы кислотных остатков.

Согласно теории электролитической диссоциа­ции все реакции в водных растворах электролитов являются реакциями между ионами . Этим обуслов­лена высокая скорость многих химических реак­ций в растворах электролитов.

Реакции, протекающие между ионами, называ­ют ионными реакциями , а уравнения этих реак­ций - ионными уравнениями .

Реакции ионного обмена в водных растворах мо­гут протекать:

1. Необратимо , до конца.

2. Обратимо , то есть протекать одновременно в двух противоположных направлениях. Реакции обмена между сильными электролита­ми в растворах протекают до конца или практи­чески необратимы, когда ионы, соединяясь друг с другом, образуют вещества:

а) нерастворимые;

б) малодиссоциирующие (слабые электролиты);

в) газообразные.

Приведем несколько примеров молекулярных и сокращенных ионных уравнений:

Реакция необратима , т. к. один из ее про­дуктов - нерастворимое вещество.

Реакция нейтрализации необратима , т. к. об­разуется малодиссоциирующее вещество - вода.

Реакция необратима , т. к. образуется газ CO 2 и малодиссоциирующее вещество - вода.

Если среди исходных веществ и среди продуктов реакции имеются слабые электролиты или мало­растворимые вещества, то такие реакции являются обратимыми, т. е. до конца не протекают.

В обратимых реакциях равновесие смещается в сторону образования наименее растворимых или наименее диссоциированных веществ.

Например:

Равновесие смещается в сторону образования более слабого электролита - H 2 O. Однако до конца такая реакция протекать не будет: в растворе оста­ются недиссоциированные молекулы уксусной кис­лоты и гидроксид-ионы.

Если исходные вещества - сильные электро­литы, которые при взаимодействии не образуют нерастворимых или малодиссоциирующих веществ или газов, то такие реакции не протекают: при сме­шивании растворов образуется смесь ионов.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости